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 Quantitative structure-activity relationship (QSAR) and molecular docking studies of 35 
compounds of Biscoumarins and Biscoumarins thiourea derivatives as ⍺-glucosidase 
inhibitors was performed. Density Functional Theory (DFT) method was employed for 
complete geometry optimization of the ⍺-glucosidase inhibitors. Genetic Function Algorithm 
(GFA) of the material studio was utilized to develop four models. Model 1 was found to be 
the best model with R2 = 0.914362, R2 adj = 0.892953, Q2cv = 0.858197 and R2 pred = 
0.614745. The proposed model is robustness and predicted with good internal and external 
validation. The descriptors should be considered when improving the inhibitory activities of 
biscoumarin derivatives against ⍺-glucosidase. The docking results showed that ligands 
having Ortho substituted phenyl ring have good interactions with active site residues and 
good inhibitory activities as compared to ligands having either Para or Meta substituted 
phenyl ring except ligand 16 which has the highest docking scores of -12.5 kcal/mol but 
undergoes para substitution on the phenyl ring and formed hydrogen bond, hydrophobic and 
electrostatic interactions with the active residues of the enzyme. The QSAR model and 
molecular docking results agree with each other and give way to the designing of new 
inhibitors with better activity against ⍺-glucosidase.  
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1. INTRODUCTION  

α -glucosidase (EC.2.2.1.20) is an important enzyme 
that plays a crucial role in the metabolism of carbohydrates in 
the body. It speeds up the decomposition of glycosidic bonds 
in the non-reducing carbohydrate end, causing the release of 
excess glucose in the digestive tract of the body. It is located in 
the membranous tissue of the small intestine (Wang et al., 
2016b). α -glucosidase inhibitors are classes of drugs used to 
treat type 2 diabetes by inhibition of α-glucosidase (Taha et al., 
2015). α -glucosidase inhibitors are useful in the management 
of type 2 diabetes by preventing the decomposition of 
carbohydrates and thus reducing hyperglycemia (Kavitha et al., 
2017). α -glucosidase inhibitors can prevent viral infections in 
the body such as HIV, hepatitis, and cancer (Li et al., 2004). 

Biscoumarin is a dimeric type of coumarin with 
effective inhibitory activities (Aziz et al., 2013). Natural and 
synthetic Biscoumarin have diverse biological activities which 
include antifungal, anti-inflammatory, and antioxidant 
activities (Khan et al., 2014). 

Computer-aided drug design is very important for 
mechanisms of action, experimental results and a new 
indication for synthesizing new molecules and can help reduce 
costs and save time in drug development (Bibi and Sakata, 
2016) A large number of molecules have been identified using 
the computational method and have gotten to a clinical stage 
for drug development (Talele et al., 2010). With the increase in 
computational power, an in-silico study has led to the 

development of new active drugs with a fewer side effect. 
QSAR and molecular docking studies were carried out to 
predict the activities of various compounds and elucidate the 
specific areas where interaction may decrease or increase the 
activity of the inhibitor molecules (Amit et al., 2014); 
(Boukarai et al., 2017); (Wang et al., 2016a). QSAR establish 
a relationship between properties of various molecules and 
their biological activities while molecular docking is an in-
silico method that helps in elucidating the interaction between 
the drug and protein (Abdulfatai et al., 2017). This research 
focused on developing a QSAR model that will predict the 
activities of Biscoumarin derivatives against α -Glucosidase 
receptor and carry out molecular docking studies between the 
inhibitor compounds and α -Glucosidase receptor. 

2. MATERIALS AND METHOD 

2.1 QSAR studies 

Dataset collection: 35 sets of Biscoumarin and 
Biscoumarin thiourea derivatives and their inhibitory activities 
against ⍺-glucosidase were gotten from the literature (Zawawi 
et al., 2015) and (Khan et al., 2014) and used for this study. 
The inhibitory activities of these compounds calculated as IC50 
( � M) were converted to pIC50 (pIC50 = log1/IC50). The 
structures and the inhibitory activities of these molecules were 
shown in Table 1. The α-Glucosidase inhibitory activities of 
these molecules range from 1.13 to 2.59 (�M) as expressed in 
pIC50 logarithm scale. 

Table 1- Shows the structures and the activity (pIC50) of the dataset. 
S/No Structures pIC50 S/No Structures pIC50 

1 

 

1.57 5 

 

1.4 

2 O

OH

OOO

OH

NH

NH

S

Br

 

1.55 6 

 

1.13 

3 

 

1.59 7 

 

1.96 

4 

 

2.02 8 

 

1.74 
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Continued Table 1 
S/No Structures pIC50 S/No Structures pIC50 

9 

 

1.73 17 

 

1.71 

10 

 

1.7 18 

 

1.9 

11 

 

1.45 19 O

H3C

OH

OOO

CH3

OH

H3CO OCH3

OCH3  

2.59 

12 

 

1.43 20 

 

1.57 

13 

 

1.7 21 

 

1.72 

14 

 

1.89 22 

 

1.91 

15 

 

1.64 23 

 

2.05 

16 

 

1.5 24 

 

1.92 

Continued Table 1 
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S/No Structures pIC50 S/No Structures pIC50 
25 

 

1.92 31 

 

1.83 

26 

 

1.76 32 

 

2.35 

27 

 

2.11 33 

 

2.11 

28 O

Cl

OH

OOO

Cl

OH

OCH3

OCH3  

1.96 34 

 

2.03 

29 

 

1.22 35 

 

1.88 

30 O

Cl

OH

OOO

Cl

OH

NO2  

1.43    

 

Geometry Optimization: ChemDraw Ultra version 12.0 
software was used to draw the 2D structure of the compounds 
and save as cdx file format. The structures were then converted 
to 3D using Spartan 14.0 version 1.1.2 software. Density 
functional theory (DFT) using the B3LYP version and 6-
311G* basis set, was employed for complete geometry 
optimization of the structures (Abdulfatai et al., 2016). 

Molecular Descriptors calculation: 0D, 1D, 2D and 3D 
descriptors were calculated using PaDEL descriptor software 
version 2.18 and saved as sdf file format from the optimized 
structures of the Spartan files, (Yap, 2011). 

Dataset division: Kennard–Stone Algorithm was used to 
split the dataset into training and test set using (Kennard and 
Stone, 1969). 75% of the dataset goes to the training set used 
and the remaining 25% as the test sets used for external 
validation of the built model. 

Model Building: Regression analysis was performed 
using Genetic Function Algorithm (GFA) method in material 
studio software with the biological activities (pIC50) as the 
dependent variable and the physicochemical properties 
(descriptors) as independent variables. 

Internal validations: The built models were assessed 
using Friedman’s Lack of Fit (LOF) which served as a measure 

of fitness of a model. Below is the revised formula for the 
Friedman’s lack of fit. 

 ��� = ���
(
 � ���

� )²  (1) 

where SEE is the standard error of estimation, p is the total 
number of descriptors in the model, d is a user-defined 
smoothing parameter, c is the number of terms in the model, 
and M is the number compound in the training set. 

SEE is the standard error of estimation which equals to 
the standard deviation of the model and a model is said to be 
good when it has lower SEE value. SEE is given as: 

��� = �(����������)²
����
      (2) 

The structure of the regression model takes the 
form(Arthur et al., 2016) 

� =  �1 1 +  �2 2 +  �3 3 +  $  (3) 

where Y is the biological activity (pIC50), ‘a’s are regression 
coefficients for the corresponding ‘x’s which are the 
independent variables representing molecular descriptors of the 
molecules, the last variable ‘c’ is the regression constant. 
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R2 gives an account of the fragment of total variation of the 
model. The nearer the R2 value is to 1.0, the better the model 
developed. The most frequently used internal assessment 
parameter for QSAR model is R2 and is shown below: 

%& = 1 − ∑(���������)²
∑(������)*+�*,)²  (4) 

where Yexp, Ypred, and Ymntraining are the observed activity, the 
predicted activity and the average observed activity of the 
training set (Adeniji et al., 2018). 

Adjusted R2 (R2 adj) value changes directly with an 
increament in the number of descriptors; R2 is not suitable for 
measuring the stability of a model. In order to have a reliable 
and stable model, R2 needs to be adjusted. The adjusted R2 is 
defined as follows: 

%& = 1 − (1 − %&) (-�
)
-�.�
 = (-�
)(/0��)

-�.1
   (5) 

Where n is the number of compounds in the training set, p= 
number of descriptors in the model (Abdulfatai et al., 2017). 

The cross-validation coefficient (Qcv
2) is used to 

determine the power of a QSAR model to predict the activity 
of new compounds. Qcv

2 is represented as: 

234& = 1 − ∑(���������)²
∑(������)*+�*,)²  (6) 

where Ypred and Yexp represent the predicted and experimental 
activity (pIC50) respectively of the training set and Ymntrng the 
average activity value of the training set(Jalali-Heravi and 
Kyani, 2004). 

External validation: The external validation of the 
generated model is based on the R2 test value and is defined as:  

%5675& = 1 − ∑(���������)²
∑(������)*+�*,)²  (7) 

where Ypred and Yexp represent the predicted and biological 
activity (pIC50) respectively of the test set and Ymntrng the mean 
activity value of the test set (Tropsha et al., 2003). 

Applicability domain: Applicability domain of a QSAR 
model is employed to determine outliers and influential 
compounds and to affirm the reliability and robustness of the 
model generated (Tropsha et al., 2003). Leverage is one of the 
techniques used in evaluating the applicability domain of a 
QSAR model and is given for a chemical compound as hi:  

ℎ9 =  9(:;:)�< 9;      (= = >, ⋯ , A)  (8) 

where xi is the training compound matrix I, X is n × k 
descriptor matrix of the training set compounds and XT is the 
transpose matrix X used to build the model. As a prediction 
tool, the warning leverage (h*) which is the limit for X values 
and it’s defined as: 

ℎ∗ = C(.1
)
-   (9) 

where n is the number of training compounds, and p is the 
number of descriptors in the model.  

 

Y-randomization Test: In Y-randomization test, random 
Multi Linear regrasion models are built by randomly moving 
the activity while keeping the descriptors unchanged. The R2 
and Q2 values for the new QSAR models built for many trials 
are expected to be very low, which confirm that the developed 
QSAR models are robust. Another parameter, c%2D is also 
calculated which should be more than 0.5 for passing this test. 

E%� = %(%& − (�FGH�IG %J)&)K
0  (10) 

Quality assurance of the model: Internal and external 
validations parameters are used to assess the reliability and 
predictive ability of a QSAR model. Table 2 gives the general 
minimum requirement values for the assessment of a QSAR 
model (Veerasamy et al., 2011). 

Table 2 - General minimum recommended value for the 
evaluation of QSAR model. 

Symbol Name Value 
R2  Co-efficient of determination ≥0.6 
P (95%) Confidence interval at 95% 

confidence level 
<0.05 

Q2 Cross-Validation Co-efficient ≥0.5 
R2- Q2 Difference between R2 and Q2 ≤0.3 
N(ext, and 

test set) 
Minimum number of external and test 
set 

≥ 05 

R2
ext. Co-efficient of determination of 

external and test set 
≥0.5 

Molecular docking studies: Protein-Ligand docking 
studies on 35 Biscoumarin derivatives were performed to study 
the interaction between the binding pocket of ⍺-glucosidase 
enzyme and the ligands on Hp G62 computer system, with 
Intel ® Core™ i3 Dual CPU, M330 @2.13 GHz 2.13GHz, 
4GB of RAM using Auto dock vina 4.2 of pyrex virtual 
screening software, Chimera version 1.10.2 and Discovery 
studio software.  

Ligands Preparation: The optimized structures of the 
compounds from Spartan’14 were saved as PDB file format for 
the docking studies(Abdulfatai et al., 2017). Figure1 shows the 
3D structure of the prepared ligand. 

 
Figure 1 - 3D structure of the prepared Ligand. 

Preparation of receptor: The 3D structure of the receptor 
(Saccharomyces cerevisiae isomaltase) with the PDB code 
3AJ7 was retrieved from Protein Databank (PDB).  Discovery 
studio software was to prepare the receptor by removing water 
molecules and cofactors (Veerasamy et al., 2011) and save as 
PDB file format. Figure 2 shows the 3D structure of the 
prepared Receptor.  
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Figure 2 - 3D structure of the prepared Receptor. 

Docking of the ligands with the receptor using 
Autodock version 4.0 of pyrex software: The docking of 
ligands (Biscoumarin derivatives) with the receptor (⍺-
glycosidase) was done using Autodock version 4.0 of pyrex 
software (Trott and Olson, 2010). Chimera 1.10.2 software was 
used to build the complex (ligand-receptor) since the receptor 
and the ligand decoupled after carrying out docking with the 
autodock vina of pyrex. The ligand-receptor were visualized to 
view their interactions utilizing Discovery studio visualizer. 

3. RESULT AND DISCUSSION 

3.1 QSAR results. 

Genetic Function Algorithm (GFA) of material studio 
software was employed to generate four QSAR models. Out of 
these four models, based on the internal assessment statistical 
parameters for QSAR models, model 1 was chosen as the best 
model. The best model equation is given below: 

Model 1 

PQRST =  0.288289720 YZ[ R\]
− 0.018409794  __`abc 
+  4.204618239 __`aRSe 
−  0.003870369 fRRfg 
+  8.911608832 hiRS −  65.32884998 

R2 =0.9144 R2adj = 0.8929, Q2LOO =0.8582, N trng = 26, R2
test

 = 
0.614745, N test = 9 

The positive coefficient of the descriptors in model 1 
such as HBD Count. (Hydrogen bond donor count), AATSC5i 
(Average centered Broto-Moreau autocorrelation - lag 5 / 

weighted by first ionization potential) and MWC5 (Molecular 
walk count of order 5 (ln (1+x)) will increase the inhibitory 
activities of these Biscoumarins against ⍺-glycosidase enzymes 
responsible for the breakdown of carbohydrate. Furthermore, 
the negative coefficient of AATS8m (Average Broto-Moreau 
autocorrelation - lag 8 / weighted by mass) and ECCEN 
(Eccentric connectivity index) implies that the inhibitory 
activities of these Biscoumarins against ⍺-glycosidase will be 
more with the decrease in such descriptors. Table 3 gives the 
symbols, descriptions, and classes of the descriptors used in the 
model. 

Table 3 - List of the descriptors, their description, and 
classes for model 1 

S/no Name Description Class 
1 HBDCnt.  Hydrogen bond donor 

count. 
2D 

2 AATS8m Average Broto-Moreau 
autocorrelation - lag 8 / 
weighted by mass 

2D 

3 AATSC5i Average centered 
Broto-Moreau 
autocorrelation - lag 5 / 
weighted by first 
ionization potential 

2D 

4 ECCEN Eccentric connectivity 
index 

2D 

5 MWC5 Molecular walk count 
of order 5 (ln(1+x) 

2D 

The high calculated R2 value (0.9144), R2adj value 
(0.8929) and Qcv

2 LOO value (0.8582) of the model indicates a 
good internal assessment of the model. R2 for the external 
assessment of the model was also calculated for the test set 
containing 25% of the data and was found to be 0.6147. Table 
4 and 5 give the external validation and calculation of the 
predictive R2 of model 1. 

Table 6 present the experimental and predicted 
activities of ⍺-glycosidase inhibitors as a potent anti-diabetic 
and the residual values. The high predictive power of the 
model is indicated by the low residual value between 
experimental and predicted activities 

Correlation matrix of the descriptors in the best model: 
A correlation matrix was performed on the descriptors that 
appear in the best model and found to be highly correlated 
which means that the descriptors used to build the model are 
very good. Table 7 gives the result of the correlation matrix. 

 

Table 4 - External validation of model 1. 
S/No. pIC50 HBD Cnt. AATS8m AATSC5i ECCEN MWC5 Yprd Yprd-Yobs 

3b 1.59 4 71.62441 -0.09696 1331 8.120589 1.314125 -0.27587 
7b 1.96 4 68.58793 -0.05797 1263 8.1277 1.860515 -0.09948 
11b 1.45 4 70.53864 -0.08223 1265 8.121183 1.656818 0.206818 
15b 1.64 4 65.44368 -0.08198 1331 8.120589 1.490894 -0.14911 
19b 2.59 2 78.37368 -0.13035 797 8.111028 2.454472 -0.13553 
23b 2.05 3 89.98194 -0.11343 734 8.034955 2.166103 0.116103 
27b 2.11 2 85.45815 -0.08617 797 8.111028 2.509814 0.399814 
31b 1.83 2 75.47388 -0.19613 734 8.027803 1.733458 -0.09654 
35b 1.88 2 88.52307 -0.13147 717 7.996654 1.553316 -0.32668 
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Table 5 - Calculation of the predictive R2 of model 1. 
S/No. (Yprd-Yobs)2 Ῡtrng Yobs- Ῡtrng (Yobs- Ῡtrng)2 

3b 0.076107 1.7258 -0.1358 0.018442 
7b 0.009897 1.7258 0.2342 0.05485 
11b 0.042774 1.7258 -0.2758 0.076066 
15b 0.022233 1.7258 -0.0858 0.007362 
19b 0.018368 1.7258 0.8642 0.746842 
23b 0.01348 1.7258 0.3242 0.105106 
27b 0.159851 1.7258 0.3842 0.14761 
31b 0.00932 1.7258 0.1042 0.010858 
35b 0.106722 1.7258 0.1542 0.023778 

 Σ(Yprd-Yobs)2=0.4588   Σ(Yobs-Ῡtrng)2=1.1909 
R2=(1-0.4588/1.1909)=0.614745 

Table 6 - Comparison of Experimental (pIC50), Predicted (pIC50) and Residual of Model 1. 

 

Table 7 - Pearson’s correlation matrix of the descriptors 
in model 1. 

 HBD Cnt. AATS8m AATSC5i ECCEN MWC5 

HBD Cnt. 1 

AATS8m -0.71498 1 

AATSC5i 0.690063 -0.33956 1 

ECCEN 0.931779 -0.85799 0.68082 1 

MWC5 0.599984 -0.68793 0.711074 0.747915 1 

Figure 3 shows the plot of predicted activities of 
both training and test sets against Experimental activities, 
the reliability of model 1 was confirmed by high Linearity 
of this plot which indicates the high predictive power of the 
model. 

The measure of the dispersion of standardized 
residual values from the Experimental activity (pIC50) 
values is presented in Figure 4. The propagation of the 

errors on both sides of zero is an indication of the 
robustness of model 1 

 

Figure 3 – The plot of the Experimental and Predicted 
activity of both the training and test sets of model 1. 
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S/no pIC50 predicted pIC50 Residual 
1 1.57 1.572693 -0.00269 
2 1.55 1.524139 0.025861 
4 2.02 1.883073 0.136927 
5 1.4 1.468213 -0.06821 
6 1.13 1.189773 -0.05977 
8 1.74 1.795393 -0.05539 
9 1.73 1.645647 0.084353 
10 1.7 1.715159 -0.01516 
12 1.43 1.420691 0.009309 
13 1.7 1.8595 -0.1595 
14 1.89 1.863038 0.026962 
16 1.5 1.461293 0.038707 
17 1.71 1.683683 0.026317 
18 1.9 1.899039 9.61E-04 
20 1.57 1.662324 -0.09232 
21 1.72 1.817606 -0.09761 
22 1.91 1.917366 -0.00737 
24 1.92 1.879253 0.040747 
25 1.92 2.026843 -0.10684 
26 1.76 1.730718 0.029282 
28 1.96 2.006411 -0.04641 
29 1.22 1.170741 0.049259 
30 1.43 1.463729 -0.03373 
32 2.35 2.288598 0.061402 
33 2.11 2.138544 -0.02854 
34 2.03 1.786534 0.243466 
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Figure 4 – The plot of the standardized residual and 
Experimental activity (pIC 50) of model 1. 

Williams plot of model 1: Figure 5 shows the 
Williams plot of the standardized residual against leverages 
of both the training and test sets of model 1. Four 
compounds of the test set were found to be influential 
because their leverage values are greater than the warning 
leverages (h*= 0.692). This is because their molecular 
structure is different from other compounds of the dataset. 

 

Figure 5 – Williams plot of the standardized residual 
and leverages of both the training and test sets of model 

1. 

Y-randomization test of model 1: The Y-
randomization test presented in table 8 showed that the 
model is not obtained by chance it is robust and good 
because it has significantly low R2 and Q2 values for several 
trials and also CR2

P value is greater than 0.5. 

3.2 Results of molecular docking studies of the 
Biscoumarins derivatives. 

Molecular docking studies of 35 Biscoumarin and 
Biscoumarin thiourea derivatives was carried out against ⍺-
glucosidase to find out their docking scores and their 
interactions. Ligands with the best docking scores were 
presented in table 9 and the docking scores were found to 
correlate with their experimentally determined inhibitory 
activities. Ligand 16 with the best docking scores of -12.5 
kcal/mol showed hydrogen bond interaction with ASP352 
(3.6970Å), ARG315(2.6445Å) and ARG442(2.5865Å) 
active sites. Also, it forms a hydrophobic interaction with 
HIS280, TYR158, LYS156, PRO312, ARG315, TYR72 
and PHE178 active site of the receptor. In addition, it forms 
an electrostatic interaction with GLU277, ASP307, 

ARG315, ARG442, ASP352, ASP69 and ASP215 residues. 
Figure 6 and 7 give the 3D, 2D and H-bond interaction 
between ⍺-glucosidase and ligand 16. From the docking 
studies, it is shown that ligand 16 has the highest docking 
scores and showed very good interaction with the active site 
residue of the receptor as compared to other ligands. 

 

Figure 6 – 3D and 2D interaction between ⍺-glucosidase 
and Ligand 16. 

 

Figure 7 – The Hydrogen-bond interaction between 
ligand 16 and ⍺-glucosidase 
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Table 8 - Result Y randomization test 
Model R R2 Q2 

Original 0.881884 0.777719 0.608842 
Random 1 0.649304 0.421596 0.069882 
Random 2 0.258633 0.066891 -0.42333 
Random 3 0.218202 0.047612 -0.63194 
Random 4 0.562411 0.316306 -0.06344 
Random 5 0.1465 0.021462 -0.58996 
Random 6 0.497656 0.247662 -0.20249 
Random 7 0.197324 0.038937 -0.51371 
Random 8 0.459429 0.211075 -0.15327 
Random 9 0.284061 0.080691 -0.40922 
Random 10 0.489127 0.239246 -0.11405 

Random Models Parameters 
Average : 0.376265 

Average r2 : 0.169148 
Average Q2 : -0.30315 

cRp2 : 0.703378 

Table 9- Binding energy, hydrophobic interactions, Electrostatic/other interactions, Hydrogen bonds and Hydrogen bond 
distance of ⍺-glycosidase and the ligands with highest docking scores. 
Ligand-
Receptor 

Binding 
Energy(kcal/mol) 

Hydrophobic interaction Electrostatic 
Interaction/Others 

Hydrogen Bonds Hydrogen Bond 
Distance (Å) 

1 -11.4 TYR158, HIS280, LYS156 
and ARG315 

ASP307 THR310, SER311, 
THR310 and ASP307 

2.5128, 2.6980,3 
.5082 and 2.0744 

2 -11.8 HIS280, SER15, TYR158, 
VAL216, LYS156, 

PRO312, ARG315 and 
PHE178 

GLU277, ASP307, 
ASP215, ARG315, 
ARG442, ASP307 
and ASP352, 

ASP352, GLN353, 
ARG315 and ARG315 

3.0663, 3.7505, 
2.6071 and 

2.68669 

5 -12.0 TYR158, SER157, 
LYS156, PRO312 and 

ARG315 

ARG31, GLU277, 
ASP307 and 
ASP352 

SER311, ASP352, 
GLU411, ARG315, 

ARG315, ARG442 and 
ASP215 

2.1412, 3.5428, 
3.6486, 2.5651, 
2.8086, 2.3801 

and 3.6394 
9 -11.4 TYR158, ARG315, 

LYS156 and ARG315 
ASP307, ASP307 
and SER304 

HIS280 4.1192 

16 -12.5 HIS280, TYR158, 
LYS156, PRO312, 

ARG315, TYR72 and 
PHE178 

GLU277, ASP307, 
ARG315, 
ARG442, ASP352, 
ASP69 and 
ASP215 

ASP352, ARG315 and 
ARG442 

3.6970, 2.6448 
and 2.5865 

17 -11.8 HIS280, TYR158, 
SER157, LYS156, 

PRO312 and ARG315 

GLU277, 
ARG315, ARG442 
and ASP307 

SER311, ASP352, 
ARG315 and ARG315 

2.0858, 3.1577, 
2.592 and 2.8519 

24 -11.0 SER157 , PRO312, 
LYS156, ARG315 and 

TYR158 

ASP307 THR310, SER311 and 
ARG315 

3.0061, 2.2284 
and 2.5721 

30 -11.4 HIS280,  SER311, 
PRO312, LYS156, 

ARG315 and TYR158 

ASP307 THR310 and ARG315 2.2917 and 2.5050 

.

4. CONCLUSION 

QSAR and molecular docking studies of 35 
compounds of Biscoumarin and Biscoumarin thiourea 
derivatives as ⍺-glucosidase inhibitors was performed. 
Density Functional Theory (DFT) method was employed 
for complete geometry optimization of the ⍺-glucosidase 

inhibitors. Genetic Function Algorithm (GFA) of the 
material studio was utilized to develop four models. Model 
1 was found to be the best model with R2 = 0.9144, R2 adj = 
0.8929, Q2 = 0.8582 and the external validation R2 pred = 
0.6147. As a result of the negative and positive coefficient 
of the descriptors in the model, it indicates that decrease in 
descriptors with negative coefficients such as AATS8m and 
ECCEN with increase in HBD count, AATSC5i and 
MWC5  descriptors with positive coefficient will increase 
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the inhibitory activity of these molecules against ⍺-
glucosidase key enzymes responsible for the breaking down 
of carbohydrate. From the docking studies, it is shown that 
ligand 16 has the highest docking scores of -12.5 kcal/mol 
and formed hydrogen bond, hydrophobic and electrostatic 
interactions with the active site of the receptor. The QSAR 
model and molecular docking results correlate with one 
another and give room for designing new ⍺-glucosidase 
inhibitors with better activity. 
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