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The convergence of AT with IT applied to industrial processes related to manipulating liquids 
and gaseous materials (fluid processes) is a relevant subject since it shows the benefits that 
managers will attain by enhancing their decision-making. This work describes an integration 
architecture of organized information in three different domains: the business, value chain, 
and asset lifecycle domains, to be used in AT and IT master plans as guidelines for the 
organization’s investment portfolio management. Then a standard model for integration and 
validation of information concerning operation and management of an industrial organization 
was developed using industry digital transformation concepts applied to its fluid processes, 
which was named the Digital Plant model. These results will contribute to the advance of 
researches related to convergent AT and IT applied in fluid processes, providing decision-
making managers with greater confidence, formal documentation, and democratization of 
accumulated experience. 
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  R E S U M O  
 

 A convergência da Tecnologia de Automação (TA) com a Tecnologia de Informação (TI) 
aplicada aos processos industriais relacionados à manipulação de líquidos e materiais 
gasosos (processos fluidos) é um assunto relevante, uma vez que mostra os benefícios que os 
gestores obterão ao aprimorar sua tomada de decisão. Este trabalho descreve uma 
arquitetura de integração de informações organizadas em três domínios diferentes: os 
domínios de negócios, cadeia de valor e ciclo de vida do ativo, para ser utilizada por planos 
diretores de TA e TI como referência para o gerenciamento de portfólio de investimentos da 
organização. Um modelo padrão para integração e validação de informações relativas à 
operação e gerenciamento de uma organização industrial foi desenvolvido usando conceitos 
de transformação digital da indústria aplicados a seus processos de fluidos, que foi 
denominado modelo de planta digital. Estes resultados contribuirão para o avanço de 
pesquisas relacionadas à AT convergente e à TI aplicadas em processos fluidos, 
proporcionando aos gestores de tomada de decisão maior confiança, documentação formal e 
democratização da experiência acumulada. 
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N O M E N C L A T U R E  

AIMP  Automation and Information Master Plan 
AM  Alarm Management 
APS  Advanced Planning and Scheduling 
AT  Automation Technologies 
BPM  Business Process Mapping 
CAD  Computer-Aided Design 
CAE  Computer-Aided Engineering 
CAM  Computer-Aided Manufacturing 
CMM  Collaborative Manufacturing Management 
CPS  Cyber Physical System 
DCS  Digital Control Systems 
DIK  Data, Information, and Knowledge 
DVR  Data Validation and Reconciliation 
EAM  Enterprise Asset Management 
EMI  Enterprise Manufacturing Intelligence 
ERP  Enterprise Resource Planning 
IIoT  Industrial Internet of Things 
IT  Information Technologies 
KPI  Key Performance Indicator 
LIMS  Laboratory Information Management System 
MES  Manufacturing Execution Systems  
OCAP  Out-of-Control Action Plan 
OEE  Overall Equipment Effectiveness 
OLAP  On-Line Analytical Processing 
OPC-UA Open Platform Communications-Unified 

Architecture 
PAM  Plant Asset Management 
PFD  Process Flow Diagram 
PIMS  Plant Information Management System 
PLC  Programmable Logic Controller 
PLM  Plant Lifecycle Management 
PLM/D  Plant Lifecycle Management-Design 
PLM/S  Plant Lifecycle Management-Support 
PSO  Particle Swarm Optimization 
RACI Responsible-Accountable-Consulted-Informed 
RBAC  Role-Based Access Control 
RPO  Reactive Power Optimization 
SCADA  Supervisory Control and Data Acquisition 
SCM  Supply Chain Management 
SOA  Service-Oriented Architecture 
SVG  Scalable Vector Graphics 

1. INTRODUCTION  

It is known that the Automation Technologies (AT) and 
Information Technologies (IT) of the fluid-process industry 
require monitoring, control, and management of information on 
their industrial operations, interconnected and published in real-
time by their systems, mainly due to seven management needs: 
1) synchronization of business with production via certified 
information; 2) optimization of the supply chain; 3) 
establishment of collaborative projects and engineering; 4) 
establishment of an “operator-maintainer” philosophy; 5) 
creation of value by delegating power to people and measuring 
their results; 6) prioritization of the customer; and 7) enabling 
collaboration between all employees of all  levels in the 
hierarchy. 

In order to meet these needs, technological cornerstones 
of Industry 4.0 could be used: augmented reality, autonomous 
machinery, simulation, vertical and horizontal integration 

systems, the Industrial Internet of Things (IIoT), 3D printing, 
cloud computing, cybersecurity, and big data analytics. 

The relevance of the digital transformation concepts to 
humanity is such that in the very near horizon they will change 
the way in which managers act, although these Cyber Physical 
System (CPS) integrated technologies are not yet available for 
their day-to-day tasks. 

Several works in the scientific literature indicate the use 
of industry digital transformation concepts applied to AT and IT 
convergence in industrial processes related to the handling of 
solid products for being in this industry the largest applications. 
Accordingly, in this article it is shown that the fluid processes 
are also improved by applying industry digital transformation 
concepts. 

As described above, fluid processes are not the largest 
applications; the industries in this branch are small in number, 
which limits and restricts the interest in research in this sector. 
The technologies mentioned, as the technological cornerstones 
of Industry 4.0 concepts, still need to be studied, researched, and 
improved so that they can be used in fluid processes. 

Regarding IIoT, Atzori et al. (2010) and Xu et al. (2014) 
cite research results about possible applications of industrial 
processes for handling solid products, of which the automotive 
industry is the largest customer. Gubbi et al. (2013) show the 
vision and architectural elements of the systems and indicate 
directions that the manufacturing industry ought to follow. 
Miorandi et al. (2012) present a general overview and suggest 
what the research-related challenges and applications are. 
Sadeghi et al. (2015) and Weber et al. (2010) deal with security 
and privacy concepts of the information gathered and processed 
by the IIoT in general industries. 

Cloud computing, a major technological cornerstone, is 
cited by Brettell et al. (2014), who show perspectives on how 
the virtualization, decentralization, and establishment of 
networks contribute to the change in the industrial scenario. 
According to Huo et al. (2016), a cloud-based intensive data 
structure could be applied to diagnosis in fluid industrial 
processes. Marston et al. (2011) indicate perspectives and 
discuss how cloud computing will be applied to society in the 
future. Tao et al. (2011; 2014) discuss cloud manufacturing, 
suggesting the application of the service-oriented 
manufacturing model to the industry of solid products. Wang et 
al.(2013) show an interoperable solution for cloud 
manufacturing applied to robotics and computer integrated 
manufacturing. Xiong et al. (2015) propose a cloud operating 
system for industrial applications. Xu (2012) suggest a path 
from cloud computing to cloud manufacturing with integrations 
between Computer-Aided Engineering (CAE), Computer-
Aided Design (CAD), and Computer-Aided Manufacturing 
(CAM). 

The key architecture of cloud computing in generic 
applications, Service-Oriented Architecture (SOA), is cited by 
Huhns et al. (2005), who describe its key concepts and 
principles. Karnouskos et al. (2012) discuss SOA-based 
architecture for empowering future collaborative cloud-based 
industrial automation, and Tsai et al. (2010) propose a service-
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oriented cloud computing architecture to be used for general 
purposes and not only in industry. 

With regard to collaborative automation, Busi (2006) 
cites current integration of information gaps and future research 
in collaborative performance management. Chen et al. (2010) 
study distributed collaborative control for industrial automation 
with wireless sensor and actuator networks. Leitao et al. (2004; 
2005) research a collaborative automation approach to 
distributed production systems and collaborative production 
automation and control architecture. Ming et al. (2008) show 
how collaborative process planning and manufacturing are 
integrated with product lifecycle management. Valilai et al. 
(2013) study a collaborative and integrated platform to support 
distributed manufacturing systems using a service-oriented 
approach based on the cloud computing paradigm. Xiong et al. 
(2012) present how works in a real-time manufacturing 
integration and intelligent solution in a global chemical 
company. 

With regard to supply chain management, Frohlich et al. 
(2001) refer to arcs of integration in an international study of 
supply chain strategies. Lambert et al. (2000) prefer to focus on 
issues in the supply chain management of several companies 
involving multiple members of supply chains, which are then 
used to illustrate the concepts described. Narasimhan et al. 
(2002) show the effects of supply chain integration on the 
relationship between diversification and performance used in 
integrating a supply chain strategy in the market and product 
diversification strategy. Vickery et al. (2003) show the effects 
of an integrative supply chain strategy on customer service and 
financial performance, showing how to analyze direct versus 
indirect relationships. Hairui et al. (2008) refer to a multi-agent-
based chemical-plant process-monitoring and management 
system. The application of big data analytics, one of the key 
pillars of Industry 4.0 concepts, in robotics and solids 
manufacture was cited by Lee et al. (2014) in service innovation 
and smart analytics for Industry 4.0 and the big data 
environment. Lidong et al. (2016) study big data in cyber-
physical systems, digital manufacturing, and Industry 4.0. 
Romero et al. (2016) show what the 4.0 operator will be: human 
cyber-physical systems and adaptive automation towards 
human–automation symbiosis work systems. 

Towards Industry 4.0 , Weyer et al. (2015)  show that 
standardization is the crucial challenge modular, multi-vendor 
production systems for highly modular, multi-vendor 
production systems. 

Taking into account the described studies, which indicate 
the application of Industry 4.0 concepts in solids-handling 
processes, this paper describes a proposal of an integration 
architecture of information organized in three different 
domains: the business, value chain, and asset lifecycle domains, 
to be used in AT and IT master plans as guidelines during the 
planning period and applied to fluid processes. 

2. TEORY 

2.1 Gathering and processing data 

The certification and reconciliation of data (Data 
Validation and Reconciliation – DVR) of industrial balances is 
constituted of associated information and procedure layers that, 
among other things, depend on the plant’s maturity in diverse 
aspects, such as its instrumentation. 

Practically any level of operational maturity may benefit 
from the concepts and techniques presented here. An 
inadequately instrumented plant, or even in design, may benefit 
from the DVR concepts to direct the investment and plan the 
instrumentation positioning. This will maximize the valuable 
information output, while a highly mature plan may experience 
the maximum gain, obtaining a highly accurate operational 
picture. 

The basis of DVR is access to process data. In an ideal 
situation, all information must be concentrated in a temporal 
database (data historian), which is the nucleus of the Plant 
Information Management System (PIMS). 

The balance process data, flow meters and totalizers, data 
on pressure and temperature, analyzers, and other indirect 
laboratory measurements, in addition to the manual data input, 
must be registered in the temporal database by using supervising 
systems or operational stations of the Digital Control Systems 
(DCSs), leaving the integrated information to be democratized 
to the management and making of the users. The DVR is fed by 
this wide, cohesive, and available data. 

2.2 Data reconciliation 

The unbalances can be fundamentally categorized by 
their intensity or frequency: small but highly frequent errors are 
typical of “random errors” inherent in the measurement of any 
variable and are originated by the superposition of several 
factors, such as oscillations in the electrical input of the 
instruments. On the other hand, large and low-frequency errors 
are called “rough errors”. 

The most general procedure for data validation is 
composed of a data pre-conditioning phase (filters, averaging, 
etc.), followed by an iterative cycle of data reconciliation 
(mitigation of random errors) and detection/elimination of 
rough errors, at the end of which, if the conditions allow, more 
accurate estimates will be provided, that is, estimates that are 
closer to the “actual” value, with a lower variance and devoid of 
rough errors. In this article we call this set of procedures DVR.  

The data reconciliation essentially has a need for 
redundancies in the process readings, and the analysis of the 
existing measurers positioning is an important tool to guide 
investments in automation. Inadequately instrumented plants 
with low redundancy or badly integrated architectures offer 
fewer possibilities for data reconciliation and detection of rough 
errors. 

The classical data reconciliation procedure is based on 
adding information that is considered perfect regarding the 
conservation of mass and energy and often kinetic and 
thermodynamic models. 

Another fundamental piece of information to be taken 
into account is the process topology, represented in a Process 
Flow Diagram (PFD), which introduces the system’s 
restrictions, basically mapping the sources and the destinations 
of the mass and energy in all circuits. 

It is also necessary to gather the available information 
about the reading precision in a variance matrix. This 
information makes it possible to perform larger adjustments for 
the least reliable readings and vice-versa, preserving the quality 
of the measuring equipment. 

In the example illustrated by Figure 1, all flow rates are 
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measured by instruments. It is possible to verify that there are 
two readings for each flow rate: F3, for example, has a value 
read by an instrument and can be calculated by using F3 = F1 – 
F2. 

In case F3 is not measured, it is not possible to verify it, 
because the F3 flow rate will only be calculated and not directly 
measured. The data reconciliation uses mathematical methods 
to divide the general estimation problem into subproblems: 
redundant, not redundant, observable, and not observable. This 
is done in such a way as to obtain estimates for the measured 
values that are redundant and for the non-measured values that 
are observable, so that the balancing equations are respected. 

 

Figure 1 – Measurement points of all inputs and outputs 
units 

Numerous software tools can be used by a DVR system: 
from a solver in an Excel file to specific systems that execute 
models and interpret its generated results automatically. 

2.3 Detection and correlation of rough errors 

Errors that cannot be mitigated by data reconciliation 
procedures due to their intensity and frequency could have 
several origins: complete failures in reading (outliers e.g. 
spurious values), undetected leakage and evaporation losses, 
fouling of the heat exchanger, decalibrated or unreset 
instruments, sensor failures, manual withdrawal or addition of 
material to the process without informing the system, and 
alignment issues in transfer routes, among others. 

The detection and identification of rough errors is an 
important tool for preventive and corrective maintenance of 
equipment and sensors. The technique makes it possible to 
follow the detection history, even with an approximated 
precision in the positioning, which may indicate which 
equipment and sensors are in a state of progressive or constant 
failure. 

The basis for rough error detection is statistical tests. A 
simple method applied in the detection of these errors by a DVR 
is to perform a residue test on the reconciled measurements in 
search of large errors, that is, a value that does not fit a given 
probability distribution. The test’s algorithm analyzes the 
residues of the reconciled measurements by comparing a 
statistical index with a critical value. 

An index larger than the critical value implies a rough 
error between the readings. The algorithm is executed until all 
the measurements show error indices that are smaller than the 
critical value. In which case the system is then considered 
deprived of rough errors and a final reconciliation procedure 
must be performed in the DVR cycle. 

 

2.4 Reports Emission 

The results of the procedures performed by the DVR 
must be disclosed to all licensed and interested individuals via 
the Intranet. The opening of the production accountability 
process is essential to validate the process and the results and to 
facilitate the effective acceptance by all users. 

If this process is not implemented, the official and the 
particular results of areas, operators, and managers will still be 
obtained, but in an individual manner, so that the gains are 
neither perceived nor used. 

2.5 Data quality analysis 

From the balancing results, it is possible to plot a trend 
graph in the temporal database showing the evolution of the 
unbalances and of the correlations applied to the measurements. 
This procedure is useful to verify whether the unbalance in a 
given process knot have anomalous behavior or not. A natural 
behavior would be small and random-sign deviations in the 
unbalances and in the corrections applied to the measurements. 
Any pattern that is not random must be thoroughly examined. 

An alternative is to monitor the quality indices capable 
of expressing, in a single percentage value, the factors that 
determine the data quality and that were estimated by the DVR. 
This would provide a higher homogeneity in the analysis, since 
these indices would be applicable to any kind of measure of the 
process. Actions considered fundamental to the success of the 
project implementation involving DVR systems as the nucleus 
of the digital plant model proposed in this article are as follows: 

Daily reconciliation: The reconciliation cannot be a 
sporadic procedure but must be a routine closing ritual for all 
the calculations of the individual plant’s performance and 
production accountability. A one-day interval is the most well 
recommended frequency of evaluation. Partial results by shift 
can be used to detect issues in a more immediate manner. A 
routine of data validation and solving discrepancies must be 
established. 

Dedicated personnel: The balance activity cannot be 
delegated to administrative assistants. This activity must be 
performed by a specialist and requires expertise in the process. 
The goal of reconciliation is not only to provide the correct 
numbers but also to scrutinize the results and look for the causes 
of the detected nonconformities. In several organizations, this 
routine is executed by personnel who are less apt to judge the 
consequences of an unexpected result and several corrective 
actions may be left unexecuted. With the evolution of 
technology, “specialist” systems could perform this task, 
scrutinize the system status, and recommend actions 
themselves. Another observed route is to meet this need via Web 
services available on the IIoT. 

Strategy for solving data discrepancies: When the 
balance result contains surprises, such as large unbalances in 
one or more knots and/or corrections applied to readings out of 
stochastic equilibrium, corrective actions must take place. The 
rough error analysis provides the opportunity to detect leakages, 
overflows, damaged or decalibrated instruments, manual 
withdrawals not mapped in the material’s system, and other 
events or situations of nonconformity. 

Communication of results: The DVR results must be 
available to all departments for use in performance reports, 
production, and so on by means of their publication in the PIMS. 
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As in the digital plant model, the data is democratized by the 
PIMS, so that operators, managers, or production/process 
engineers will have exactly the same version of the resulting 
information for a given shift, day, or month. 

2.6 Requirements of a DVR system 

A satisfactory DVR system must present the following 
properties: I) It must be capable of automatically acquiring data 
from any data source: Programmable Logic Controller (PLC), 
Supervisory Control and Data Acquisition (SCADA), DCS, 
Laboratory Information Management System (LIMS), or a 
temporal database. The ideal case is when the DVR is an Open 
Platform Communications- Unified Architecture (OPC-UA) 
client, able to automatically search data in any server of this 
kind. II) It must possess a process diagram editor of a graph 
editor for inputting the plant’s topology. Accordingly, process 
engineers will be able to configure this system quickly and 
handle it easily. III) It must be able to export data to Excel for 
report elaboration. IV) It must be able to publish data on the 
organization’s intranet. V) It must be able to store the reconciled 
data history on the temporal data base server. VI) It must be able 
to provide indices of data quality that allow evaluation of the 
measurements independently of their scale, engineering unit, or 
origin. In other words, the system must be capable of sorting the 
data quality by, for example, grading it from 0 to 100%. VII) It 
must be able to perform the data quality analysis on the temporal 
database itself. Some software applications on the market have 
extra built-in tools such os systems specializing in data 
validation and result analysis. 

3. METHODOLOGY 

Clusters of Data, Information, and Knowledge (DIK) are 
becoming larger and more present in our lives and, 
consequently, in the daily activities of industry professionals. 
These professionals who must manage them in order to 
maximize their benefits in decision making, for example, to 
contain the corporate knowledge and to democratize and 
distribute it to their resources at the right times, aiming at 
increasingly aggregating value to the business. Nevertheless, the 
high accumulated growth rate of DIK in industries has a few 
consequences: a need for mobility of human resources, 
especially those related to high-level administration; reduction 
of the number of personnel from the operational to the corporate 
level; growth in demand for increasingly specialized services; 
and virtualization of computer hardware. 

Management of the industrial operation and execution; 
management of information concerning laboratories, supply 
entry, products in process, and finished products; management 
of managing costs, finances, resources, and administrative and 
commercial process operations; simulation, optimization, and 
advanced control ; management of maintenance and 
engineering; management of maintenance and company assets; 
management of the industrial efficiency and performance via 
Web portals, which, among others, are also subject to changes. 
These systems will be installed and marketed by cloud 
computing, as a consequence of computer virtualization, 
Service-Oriented Architecture (SOA), Software As A Service 
(SaaS), wearables, the IIoT, big data analytics, cyber security, 
and Collaborative Manufacturing Management (CMM) into 
reality. 

Before the transition from information to knowledge, the 

shop floor data requires certification with regard to its veracity 
and integrity. We add to these information fluxes the concept 
that: It is no use getting informed if one is not sure about the 
information source or about the information’s veracity. With 
that being said, it is no use implementing investments in Web 
services, SOA, SaaS, and wearables that establish specialist 
systems for plant operation management, before validation it, 
certifying where each part of information is generated in the 
online energy-mass balance of an industrial plant. Services and 
functions incorporated via software in the fluid-handling 
industries, such as Advanced Planning and Scheduling (APS), 
transport logistics and Supply Chain Management (SCM), and 
compaction of historical information and knowledge 
management (PIMS). 

It is desirable that the inventory values and the industrial 
plant’s activities and stock and yield accounting are based on 
data that complies with the known restrictions in the process 
(mass–energy balance); that is, they must be reconciled data. 
The basic principle of a mass–energy balance is the law of 
conservation of matter and energy, which forces the total input 
rate to be equal to the total outcome rate, subtracting the amount 
that has been kept in the process. 

In practical terms, its not verified due to problems such 
as errors in measurements and signal transmission, poor 
conditioning of the measuring instruments, leakages, 
evaporation losses, equipment inefficiency, and so on. For this 
reason, actions must be taken to fix these problems. In order to 
do so, four steps are adopted, often cyclically: Step 1) gathering 
and processing data; Step 2) reconciling the resulting data; Step 
3) detecting, analyzing, and fixing rough errors, and Step 4) 
elaborating reports and communicating the results. 

The referential Digital Plant model (Figure 2) presented 
here propose the integration and intelligence to the AT and IT 
systems of industrial fluid processes. The Digital Plant 
integrates the business information domain with another two 
domains, the value chain domain and the organization’s assets 
lifecycle domain, in order to enhance the knowledge 
management and real-time collaboration among all corporate 
systems. 

 

Figure 2 – Digital Plant model 

The model presented here is not intended to be a 
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universal proposal of integration for all possible market 
solutions, as it was developed to serve as a basis for creating 
automation and informatics directive plans with the following 
requirements: synchronization of the business with the 
production via certified information; optimization of the supply 
chain; implementation of the collaborative project and 
engineering; establishment of the “maintainer-operator” 
philosophy; generation of value by measuring results and 
delegating power to personnel; and prioritization of the 
customer and enablement of collaboration by means of Web 
services. 

Once the conception requirements are fulfilled, the 
model may still serve in the future as a base for the development 
of several other integration proposals that use systemic solutions 
that meet the commonly required needs of the chemical industry 
or correlated processes.  

The CMM model was adopted as inspiration for the 
Digital Plant model. Digital Plant integrates the information 
needs presented in Table 1 and is adequate for application in 
industries that process fluid products. 

Table 1 – Integration of the information needs in fluid processes. 

Information Axis Reference to the following activities 

[a] Domain: Business • Mapping investment needs regarding instrumentation, Network, SCADA, DCS, etc; 
• Integration of the instrumentation, control, supervision, and industrial management systems as well as the 

applications for Particle Swarm Optimization (PSO) and Reactive Power Optimization (RPO). 
• The architectures of the networks that will integrate the sensors, instruments, valves, remote stations, 

controllers, interfaces, and operation stations; 
• In order to integrate the PIMS and DVR information where data and industrial information are 

concentrated, validated and shared;  
• Mapping, storing and managing information presentation needs, planning the gathering, storage, and 

democratization of the industry’s information; 
• Transforming historical information into continual enhancement in the production, process, quality, 

maintenance, and operation of human resources in shifts; 
• Monitoring management costs, quality, traceability, and genealogy of the products circulating in the 

industry; 
• Integrating the information from the laboratories that analyze suppliers and production; 
• Integration with Manufacturing Execution Systems (MES) and other functions, such as Overall Equipment 

Effectiveness (OEE), Alarm Management (AM), genealogy and traceability, down-time operations, etc. 

[b] Domain: Value Chain • Integration of SCM applications, management of suppliers of raw material and transportation logistics, 
processes of control of balance of raw material tanks by suppliers integrated in real time with the needs of 
the industry; 

• Integration with resource planning, planning and advanced production control applications. 

[c] Domain: Assets Lifecycle • Mapping the need for integration between engineering information, equipment data sheets, mesh diagrams, 
process and instrumentation diagrams via Plant Lifecycle Management (PLM) applications, before the 
operation (Design – PLM/D), as well as during it (Support – PLM/S); 

• Mapping Plant Asset Management (PAM) and Enterprise Asset Management (EAM) needs. 

[a] Information ranging from shop floor data will lead to the aggregation of value through its real time integration with other applications and will inform 
stationsworks whose users are managers, directors, and the CEOs; 
[b] Information on logistics management of the raw material suppliers, production planning and control, storage, tankage, relationship with customers, and 
management of delivery trucks who take the finished products to the customers; 
[c] Information on the equipment design and remaining industrial assets and their maintenance during the operation. 

 
The main motivation for developing the Digital Plant 

model is related to the specific needs pertaining to fluid 
processes: a certification of the process readings in order to 
satisfy mass-energy balances before integrating them with the 
corporate information for knowledge and decision-making. As 
a consequence, DVR-associated PIMS will have a distinctive 
role and can be called the Digital Plant’s core, because 
investments are made every moment in a corporate world, but 
professionals are not attentive to the needs concerning 
knowledge and information certification before connecting the 
industrial to the business world. 

4. RESULTS AND DISCUSSION 

As stated, the Digital Plant’s core is the association of 
PIMS and DVR, whose function is to calculate and manage the 
online mass-energy balance, assuring the validation and 

certification of information that will compose several 
management parameters. These parameters as: such as real-time 
management costs, a better set of production information, 
efficiencies, performances, planned versus accomplished, 
veracity of information that certifies the quality of the products 
produced or acquired from suppliers, the accuracy of the 
measuring and controlling instrumentation, and so on. 

4.1 Management indicators 

Besides the integration of technologies and collaboration 
among the information domains, the Digital Plant provides a 
scheme for organizing management indicators. Indicators must 
be sorted by a formal and methodical process for a drill-to-
anywhere analysis. In order to clarify this claim, it is necessary 
to return to the most basic definition of information. 

Information is an answer to a question. The question 
arises first. In order to determine which are the main required 

jc
ec



 JCEC - ISSN 2527-1075. 

indicators for the decision-making process, one must understand 
how each decision is taken and what information is needed, for 
the manager to apply a suitable action following notification 
about an issue. For example, if one needs to know whether an 
operational asset (reactor, filter, mill, distillation column) is 
being used well, one needs to measure all the process stops, the 
performance or production rate with respect to the nominal 
value for which the process was specified (according to 
specifications), and the quality of the generated product. 
Afterwards, it is customary to multiply these three indicators to 
create a Key Performance Indicator (KPI) named called the 
OEE. 

The OEE indicator displays how the production potential 
of an asset is being used. As an example, if the industrial 
organization has bought a new gas washing column for acetone 
recovery, with a given nominal recovery level, one ought to 
know how much acetone is effectively being extracted from this 
column (a process asset that was acquired some time ago by a 
monetary investment). 

In the column’s stoppages, its performance drops with 
respect to the nominal values, and the losses of quality have a 
bad effect on this grading. If the grade is 0.90, one can assert 
that the column is being used at 90% of its potential 
performance. If this grade becomes lower, on a given day, it is 
necessary to decompose this indicator into its components, and 
if the problem is the column’s availability, the main causes for 
the stoppages must be understood and tackled. This unfolding 
process for the detailing of causes is called drill-to-anywhere 
analysis and is performed as a second step after the problem’s 
detection.  

First, the problem is detected by the dashboard’s 
visualization tools; then, the manager in charge runs an 
investigation or problem diagnosis using another set of 
dashboard tools, for example Pareto charts of the stops stratified 
by the magnitude of the cause. Summarizing, the decision-
making process must be simulated during the definition of the 
KPI in order to assure its usefulness and appropriateness in 
evidencing a given issue in the organization. 

In order to check whether a certain KPI is indeed useful, 
we must verify which business matter it is related to, what 
question it answers, and what needs to be done if its value is 
incompatible with a settled goal. 

Determining which action plan to take in any operational 
situation is an arduous task that requires much investigation. 
Often, it is known how to detect a problem but not how to fix it. 
Evidently, much can be learned about process behavior by 
investigating the indicator’s system. This will keep on re-
feeding a continual re-examination of the action plan. The Out-
of-Control Action Plan (OCAP) techniques, recommended by 
the Six Sigma methodology, are very useful in this continual re-
examination. 

Among the calculated indicators, a few are technical and 
operation-related. For example, for each of the plant’s control 
meshes, about 40 indicators show whether the controller is 
operating well. From these indicators, about four or five may 
provide a global performance KPI of the mesh to be monitored. 
What the asset management needs to know is whether or not a 
certain controller obeys the commands given. 

 

4.2 Management information visualization techniques  

The display of a management indicator in the Digital 
Plant model must happen in a clear manner so as to facilitate the 
observation of its normal or abnormal behavior, and it must be 
insight-stimulating. The components must be shown for the 
exhibition of individual, grouped, and large data collections. 
The presentation components must be chosen for their ease of 
learning and use by users and for their adaptability to the 
business. In industrial environments, the visual components are 
useful for planning and process-monitoring purposes, 
identifying anomalies and deviations, and analysis. 

The Digital Plant model must be developed in this 
environment, because it possesses several advantages: it is 
suitable for SOA (Web service architectures and application 
marketplace), it facilitates maintenance, because it concentrates 
the applications in one or only a few servers, and the software 
performs updates, facilitates access control, and improves 
security via cybersecurity. 

The improvement of the components’ presentation was 
the missing element that will enable this technology to substitute 
for the inherited system designed to work in traditional desktop 
environments. These visual components contribute significantly 
to enabling this substitution to occur with an improvement of 
quality for the final user.  

As a practical example, a screen produced by a PIMS 
system, using Scalable Vector Graphics (SVG), may be 
imported directly via the Web portal to be displayed as a 
component in a smartphone. This technology enables a single 
screen to display any factory system, avoiding a multiplicity of 
monitor screens, which require a physical room in the plant. 

The resources proposed by the Digital Plant model, used 
to represent information for the staff of the local or complete 
corporation group management, are proposed in Figures 3–5. 
The resources and their descriptions are presented in Table 2. 

Table 2 – Resources proposed by the Digital Plant model and 
their descriptions 

Resource Description Figure 

Treemaps Used to display information 
associated with hierarchic structures 
for the plant overview, industrial 
assets status, control mesh tuning, 
etc. 

Figure 3A 

Management 
alarms 

These are generally hierarchy 
diagrams. They enable a presentation 
devoid of any identified anomaly and 
are frequently used in industrial 
operation environments as a 
management tool.  

Figure 3B 

Scale charts The values of the process variables 
may be monitored continually in 
these components until a given limit 
is reached and a management alarm 
is generated. They are used often in 
anomaly identification due to their 
clarity and simplicity. 

Figure 3C,D 
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Table 2: Continued 

Corporate 
charts 

Bar charts are the most common. 
Although they reproduce a limited 
amount of information, the 
visualization is simple and direct. 
Also, they can be used as filters in 
other charts for a drill-to-anywhere 
analysis. The Pareto charts display 
the causes of a phenomenon ranked 
by their relevance.  

Figures 3E,F 

Pie charts These are good for showing the 
participation of up to six variables. In 
order to compare the influence or 
participation of a larger number of 
elements, histograms are more 
suitable. 

Figure 3G 

Tracking 
diagrams 

These represent and search for the 
materials used in the manufacture of 
an intermediate product and their use 
in the manufacture of other 
intermediate or final products 

Figure 4A,B 

Management 
trends 

One can generate a large amount of 
management information from the 
analysis of dimensions (the manner 
in which the data is analyzed) with 
the measurements (analysis target 
value or quantity), for example the 
volume of operations; average 
incoming and outgoing deliveries; 
quantity of manual interventions; 
quality/conformity indices and 
percentage usage of the operational 
capacity. The possibilities are 
abundant if we consider that the 
dimensional modeling allows us to 
cross data of any dimension with any 
available measurement. 

Figure 4C 

Pivot tables 
for reports 

These enable the exchange of lines 
for columns and the representation of 
multidimensional cubes in two 
dimensions. They may use the On-
Line Analytical Processing (OLAP) 
tool, which is frequently used by 
business intelligence systems; 

Figure 4D 

Bubble 
charts 

These are the visual representation of 
the relationships found by data 
mining tools, enabling the 
investigation of cause–effect 
relationships among the process 
variables. 

Figure 4E 

Gantt 
diagrams 

Among the numerous types of 
existing charts, these stand out as one 
of the most widely used for real-time 
planning and monitoring of 
production. The use of drag and drop 
resources allows the production 
orders to be visually sequenced on 
the dashboards. 

Figure 4F 

Strategic 
maps 

These show the strategies unfolding 
into perspectives and action in real-
time. 

Figure 5 

 

Figure 3 – Digital Plant information: A) treemaps; B) 
management alarms; C and D) scale charts; E and F) 

corporate graphs; G) pie charts 

 

Figure 4 – Digital Plant information: A and B) tracking 
diagrams and correlation charts; C) management trends; 
D) pivot tables for reports; E) bubble chart; and F) Gantt 

chart 

 

Figure 5 - Strategy Map 
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4.3 Integrating information towards knowledge 
management 

The Digital Plant’s library dashboards are not merely a 
layer of representation with graphical component collections. 
They are essential for aggregation and integration; they 
aggregate content and integrate areas and processes. 

The dashboards provide abstraction from the information 
(application) sources, silos, organizational structures, and even 
companies. The idea is to supply the required information for 
the decision-making independently of the information’s origin. 
For example, the production programming of the day comes 
from the APS, production results of the day, and production 
indicators, given by the MES, the current line’s velocity, 
provided by the PIMS, dollar exchange rates and commodity 
stocks, found in external sources, and the order’s status, given 
by the Enterprise Resource Planning (ERP). Consequently, a 
need for integration with several different and scattered 
information sources of diverse technologies arises. 

Due to its complexity, the integration aspect is one of the 
most critical factors in the dashboard’s implementation. 
Luckily, several efforts are being made in order to solve the 
integration difficulties and issues, especially by creating and 
applying the SOA. 

The service bus has an important role in the 
implementation of the dashboards. It serves as a mediator 
between the customers and the available services. Its main goal 
is to provide an abstraction of the information’s origins, 
allowing all the information usage to be developed and managed 
with the highest possible independency from the infrastructure, 
systems, protocols, and proprietary technologies. All of the 
integration is performed through the consumption of the 
available services in the bus, not necessarily the system’s 
specific services. The information flux is simplified and the 
control of the integration environment is wider, in addition to 
enhancing the reuse of services. The so-called Enterprise 
Manufacturing Intelligence (EMIs) are a category of systems 
available on the market for the operational dashboard 
implementation.  

Another fundamental Digital Plant component for an 
EMI solution is a framework for dashboard implementation. 
The user interface must be web-based, allowing easier access to 
the dashboards. In addition, it must enable access based on Role-
Based Access Control (RBAC)-like rules, an access control 
based on papers, where it is possible to create, for example, 
specific visions for the plant’s production manager, a specific 
area manager, the production supervisor, or an operator of a line 
according to their information needs in each of these positions. 
Since the dashboards are implemented from a standard 
integration infrastructure that aims at the reuse of services 
(service bus), the presented information, for both the manager 
and the line operator, must be coherent and originated by the 
same source, assuring an alignment between the operation and 
management visions. 

4.4 Involving the manager 

Once the dashboard’s content and its information 
representation have been defined, it must be ensured that all the 
cycles, notifications, perceptions, diagnoses, and actions are 
being performed. This cannot be achieved without a governance 
study. In this study, for each dashboard function related to the 
operation’s multiple dimensions, namely energy, quality, 

inventory, production, process, asset management, and so on, it 
must be determined which functions are responsible for the 
analysis of the indicator in question, the decision-making, and 
the effective operational action. Every link of this chain must be 
informed about its responsibilities and must be trained. 

There are many methodologies for guiding this work, 
such as the definition of an Responsible-Accountable-
Consulted-Informed (RACI) responsibility matrix. Finally, 
whether the action plans for the beginning of the dashboard 
operation tasks are well defined must be verified, and then the 
whole of the operation’s development, including the 
notifications of the detected abnormalities and the applied 
corrective actions, must be documented. From the study of these 
records, better guidelines will be created to be incorporated in 
the procedures. Without fixing this link, the management is not 
complete and the results are not achieved. 

5. CONCLUSION 

The Digital Plant model was born from the need for a 
referential architecture for the Automation and Information 
Master Plan (AIMP) in industrial fluid-process organizations. 
The automobile sector, as the major customer of equipment and 
automation solutions, already possesses the CMM, which is 
impossible to use in processes of continual production flux such 
as the fluid processes of industrial organizations.  

This scenario requires the idealization, before 
everything, of a tactical plan based on the investor company’s 
strategic needs. An AIMP integrated in the strategic planning of 
this organization will determine baselines to formalize what to 
do the budget, which is the best/most urgent project, how to do 
it, where to do it (department or company in a group), when, and 
why (metrics and justifications for measuring results after the 
investment), using a referential model as a guide throughout.  
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