AN INSILCO STUDY OF 1,1-DIFLUORO-2-METHOXYPROPANE REACTION MECHANISM WITH THE BROMINE MONOXIDE (BrO) RADICAL

M. A. RUFAI¹, *, U. ADAMU¹, S. GIDEON¹ and S. UBA¹
¹Ahmadu Bello University, Department of Chemistry, Zaria, Kaduna State, Nigeria
*Corresponding author. Ahmadu Bello University, Department of Chemistry, Zaria, Kaduna State, Nigeria, Phone: +2347033748067
e-mail address: marufai2424@gmail.com (M. A. Rufai).

ARTICLE INFO
Article history:
Received 2018-06-05
Accepted 2018-08-27
Available online 2019-03-08

palabras clave
1,1-difluoro-2-methoxypropane
DFT
CFCs
BrO

keywords
1,1-difluoro-2-methoxypropane
DFT
CFCs
BrO

ABSTRACT
An Insilco study was carried out on the thermochemistry, mechanism and kinetics of the Hydrogen abstraction reaction of 1,1-difluoro-2-methoxypropane (CH₃CH(OCH₃)CHF₂) with the bromine monoxide radical (BrO) using the Density Functional Theory (DFT) based M06-2X/6-311++G** method. The energy values were immediately improved via optimization at DFT/M06-2X/6-311++G(2df,2p) level (single-point calculations) of the reacting species involved. The Monte Carlo search on the investigating hydrofluoroether (HFE) showed nine conformers with the lowest global minimum conformer being predicted and considered for this work. The results of this study showed that the atmospheric oxidation reaction of CH₃CH(OCH₃)CHF₂ with the BrO radical proceeded in four (4) plausible reaction routes. The total experimental rate of 4.34 *10⁻⁶ cm⁻³ molecule⁻¹ sec⁻¹ for HFE + BrO reaction was estimated with atmospheric lifetime (ALT)/global warming potential (GWP) of 1.80 years and 165.30 respectively. The 3D potential energy surfaces (PES) for the reaction was however constructed at absolute temperature of 298.15 K.
1. INTRODUCTION

The less reactivity and easy liquefaction are two main chemical properties that qualify Chlorofluorocarbons (CFCs) as good raw materials in the production of foam blowing agents, electronic detergents, aerosols, deodorant sprays, refrigerators, paint sprays, cleaning agents, furniture polishes, propellants, semiconductors etc. (Deka and Mishra, 2014; Guo et al., 2018; Philip, 1996). Researchers have shown that CFCs derivatives pose environmental hazards to ozone by diffusing into stratosphere and deplete it at a rate faster than it can be replaced in the atmosphere (Baidya et al., 2017; Garfield, 1988; Molina and Rowland, 1974; Orkin et al., 1999; Papadimitriou et al., 2007; Rowland, 1996; Rohrer and Berresheim, 2006; Rowley and Ferracci, 2014; WMO, 2010). For this fact, international restrictions and warning were placed on usage of CFCs as agreed upon in the Montreal Protocol (Good et al., 1998; Ye et al., 2016). Instead, alternative compounds with less or no posing ability to ozone is recommended as substantial substitutes for the CFCs (Espinosa-Garcia, 2003; Galano et al., 2010; MWO, 2010). Hydrofluorocarbons (HFCs) and hydrofluoroalcohols (HFAs) (Mabury et al., 2006; White and Martell, 2015), have been discovered as substantial substitutes for CFCs with numerous applications ranging from refrigeration, cleaning, foam blowing, propelling, painting, solvents, pesticides, varnishes in laboratories etc. (Deka and Mishra, 2014; Hashemi and Saheb, 2017; Hurley et al., 2004; Laszlo et al., 1997; Prather and Spivakovsky, 1990; Sako et al., 1996; Wang et al., 2009). The presence of $-O -$ linkage between these series increases their chemical reactivity in the atmosphere which accounts for the chemistry of their short lifetime and lesser atmospheric effects compare to CFCs (Baidya et al., 2017; Gour et al., 2016).

The study of CH$_3$CH(OCH$_3$)CHF$_2$ with BrO radicals is an important atmospheric oxidation reaction that will provide information on the tropospheric reactivity of HFEs and also help to find degradation pathways of HFEs in the atmosphere. Hence, it is very necessary/vital to dig into the atmospheric chemistry of the HFEs for their better understanding as substantial substitutes for CFCs and to determine more of their impacts on the environment.

Many experimental studies carried out on the related study of this kind only provided the overall rate constants but found it very difficult to reveal the actual mechanism and the true reaction picture especially when the reaction is multi channels. However, with computational study the detailed mechanism, thermochemistry of multi channels of reactions, the tunneling correction and overall rate constant can be estimated accurately and simultaneously. This as a modern computational chemistry technique is very simple, time and cost saver, accurate and very fast compares to wet laboratory method.

The main objective of this study was to make an Insilco study on reaction of CH$_3$CHOCHF$_2$ with BrO radical using computational techniques. And also aimed at studying the computational kinetics of H-abstraction reaction of CH$_3$CHOCH$_2$F by BrO radical which involves four (4) H-abstraction positions of CHF$_2$, CH$_2$F, −CH and −CH$_3$ as shown in the chemical reactions R1-R4.

\[
\text{CH}_3\text{CH(OCH}_3\text{)CHF}_2 + \text{BrO} \rightarrow \text{CH}_3\text{CH(OCH}_3\text{)}\text{CF}_2 + \text{HOBr} \quad (R1)
\]

\[
\text{CH}_3\text{CH(OCH}_3\text{)CHF}_2 + \text{BrO} \rightarrow \text{CH}_3\text{C(OCH}_3\text{)CHF}_2 + \text{HOBr} \quad (R2)
\]

\[
\text{CH}_3\text{CH(OCH}_3\text{)CHF}_2 + \text{BrO} \rightarrow \text{CH}_3\text{CH(OCH}_3\text{)CHF}_2 + \text{HOB} \quad (R3)
\]

\[
\text{CH}_3\text{CH(OCH}_3\text{)CHF}_2 + \text{BrO} \rightarrow \text{CH}_2\text{CH(OCH}_3\text{)CHF}_2 + \text{HOB} \quad (R4)
\]

The study by Christensen et al., 1998 on HFE – 7200 (C$_2$F$_4$OC$_2$H$_4$) with OH radicals at 295 K revealed that HFE – 7200 has k (OH + n-C$_2$F$_4$OC$_2$H$_4$) = (6.4 ± 0.7) \times 10$^{-14}$ cm3 molecule$^{-1}$ s$^{-1}$, k (OH + i-C$_2$F$_4$OC$_2$H$_4$) = (7.7 ± 0.8) \times 10$^{-14}$ cm3 molecule$^{-1}$ s$^{-1}$ and atmospheric lifetime of 0.9 and 0.7 years respectively. Also, computational study of H-abstraction reactions from CH$_3$OCH$_2$Cl/ CH$_3$OCH$_2$CH$_2$Cl by Br atom and OH radical showed that their atmospheric lifetime are 39 hrs. and 19 hrs. respectively. (Gour et al., 2016). Thus, the presence of an atom of Br, Cl, I etc. in an atmosphere is a chemical set back to ozone layer (Deka and Mishra, 2014; Laszlo et al., 1997; Wofsy et al., 1975; Yang et al., 2007).

To ascertain fluorinated ethers as substantial alternatives for CFCs, there is necessity for proper and several Insilco/wet laboratory studies on them so as to determine them as substantial candidates capable of replacing CFCs.

2. MATERIALS AND METHODS

2.1 Samples used (HFEs and radical)

1,1-difluoro-2-methoxypropane (HFE), BrO radical were used for this Insilco study (Anderson, 1987; Baidya et al., 2017; Hashemi & Saheb, 2017; Schlager et al., 2012; MWO, 2010). The 3D structures of HFEs/radical were drawn using Spartan 14 v 112 suite licensed software (Spartan ’14, 2013).

2.2 Computational Procedures

The Spartan 14 v 112 suite licensed software was used for all the electronic calculations. The geometry optimization of all chemical species involved in the reaction were carried out using density functional theory (DFT) based M06-2X method with the 6-311++G** basis set (Spartan ’14, 2013). To improve the energy values, 6-311++G(2df,2p) single-point calculations were immediately performed using same DFT method. Earlier related studies on computational kinetics proved that, theoretical thermochemistry and kinetics of reaction can be modeled accurately and provides reliable results when the DFT with M06-2X level of theory is employed (Baidya et al., 2017; De Carvalho and Roberto-Neto, 2018; Hashemi and Saheb, 2017; White and Martell, 2015).
The minimum energy equilibrium structure obtained at each stationary point has all real frequencies meanwhile transition state possesses one imaginary frequency. The imaginary frequency in transition state corresponds to the coupling of stretching modes of the breaking C–H. Transformation from the reactant to product via the transition state (TS) along the minimum energy path was confirmed with the help of intrinsic reaction coordinate (IRC) calculations at the M06-2X level of DF theory (Baidya et al., 2017; Gour et al., 2016). IRC calculations confirmed the formation of pre and post-reaction complexes of the reactant/product molecule with the BrO radical or HOBr in both the entry and exit of each reaction channel.

The rate constants (k) for H–abstraction reactions were obtained from the reaction basic steps involving according to equation 5-6.

\[HFEs + BrO \rightarrow TS1 \]
(5)

\[TS1 \rightarrow P + HOBr \]
(6)

The rate coefficients (k), change in enthalpy (\(\Delta H^0_{\text{rxn}} \)), change in free Gibb’s energy (\(\Delta G^0_{\text{rxn}} \)) of each radical’s reaction channels were computed according to the view of Baidya and coworkers in 2017 as expressed in equation 17

\[\Delta G = \frac{k_BT}{Q_r} + \frac{\Delta G^*}{RT} \]
(7)

\[\Delta rH^o_{\text{rxn}} = \sum_{\text{prod.}} \Delta rH_{\text{prod.}} - \sum_{\text{react.}} \Delta rH_{\text{react.}} \]
(8)

\[\Delta rG^o_{\text{rxn}} = \Delta rH^o_{\text{rxn}} - T \Delta rS^o_{\text{rxn}} \]
(9)

\[\Delta rE^o_{\text{rxn}} = \sum_{\text{prod.}} \Delta rE_{\text{prod.}} - \sum_{\text{react.}} \Delta rE_{\text{react.}} \]
(10)

The change in enthalpy as well as Gibb’s free energy of each transition states were estimated using expressions 11-12

\[\Delta H^\# = \sum_{\text{prod.}} \Delta H^\# - \sum_{\text{react.}} \Delta H_{\text{react.}} \]
(11)

\[\Delta G^\# = \Delta H^\# - T \Delta S^\# \]
(12)

The total rate coefficient was calculated using expression 13

\[k = k_{R_1} + k_{R_2} + k_{R_3} + k_{R_4} \]
(13)

The branching ratios (BR) for the Hydrogen abstraction reaction channels of each radical, which is reported by Deka and Mishra, 2014 to have been represented the individual contribution of a reaction channel toward overall reaction rate were computed using an expression 14.

\[\text{Branching ratio} = \frac{k}{k_{\text{Total}}} \times 100 \]
(14)

The \(E_a \) values of all reaction channels for each radical were determined using expression 15.

\[E_a = \Delta G^0 \pm = \sum \Delta G_r \]
(15)

The atmospheric lifetime of HFE + BrO radical was computed using an expression 16.

\[\tau_{\text{eff}} = \frac{1}{r_{\text{BrO}}} \]
(16)

The 100-time horizon Global warming potential (GWP) of HFE is estimated in accordance to the view of Baidya and his colleagues in 2017 as expressed in equation 17

\[\text{GWP}_i(H) = \frac{\int_0^{100} R_{F_i}(t) dt}{\int_0^{100} R_{F_{CO_2}}(t) dt} = \frac{AGWP_i(H)}{AGWP_{CO_2}(H)} \]
(17)

3. RESULTS AND DISCUSSION

3.1 Sample conformers

Fig. 1 shows the nine possible conformers of 1,1-difluoro-2-methoxypropane molecule ranging from the lowest to highest energy conformers.

Monte Carlo’s search (conformational analysis) performed on HCH(OCH3)CHF2 molecule by selecting Setup/Calculation/Conformational search under the application menu. MMFF force field was selected with maximum iteration number entered under the Mini tab. The default (1000) for maximum number was activated from the conformational search tab. The operation was then started with file name given. The result of this operational search showed nine conformers as illustrated in Fig. 1. From the analysis, conformer 1 (0.10 kcal mol\(^{-1}\)) had the lowest global minimum predicted. This search was aimed at identifying the possible conformers of HCH(OCH3)CHF2 molecule with their respective global minima and to select the most stable conformer. Conformers with higher global minima were not considered since they are unstable (Baidya et al., 2017). The generated conformers were arranged in Fig. 1 in order of increasing in their energy stabilities. So, with reference to Fig. 1, conformer 1 (2.88 kcal mol\(^{-1}\)) has the highest energy predicted and thus the most unstable.

Fig. 2 shows the 3D structures of the optimized reacting species while Fig. 3 depicts 3D PES of H-atom abstraction from HFE with the radical.

Table 1 and 3 show the results of calculated energies and enthalpies (in kJ mol\(^{-1}\)) of the reacting species with BrO radical at DFT/M06-2X/6-311++G** level while the Table 2 and 4 show the results on single-point calculation which was aimed at improving the reacting species energies as well as their enthalpies (in kJ mol\(^{-1}\)) at DFT/M06-2X/6-311++G(2df,2p) level.

Table 5 shows the thermodynamics calculation results of H-abstraction reaction routes that were performed at DFT/M06-2X/6-311++G** level with BrO radical. These results show that reaction through the routes R1 and R2 were exothermic in nature i.e. \(\Delta_rH^o_{\text{rxn}} < 0 \) and thermodynamically favorable while R3 and R4 routes followed endothermic reactions (\(\Delta_rH^o_{\text{rxn}} > 0 \)), thus the routes (R2 and R3) were thermodynamically unfavored. The \(\Delta_rE^o_{\text{rxn}} \) across the four routes of this reaction proved that R2 and R4 routes have high possibility of H-abstraction than R1 and R3 since they (R2 and R4) had lower \(\Delta_rE^o_{\text{rxn}} \). Also, the negative values of \(\Delta_rG^o_{\text{rxn}} \) across all the reaction routes indicated that the obtained products were thermodynamically feasible. Hence, R2 is more feasible. However, an improved and further thermodynamics single-point calculation (DFT/M06-2X/6-311++G(2df,2p)) results in Table 6 illustrates the endothermic nature of reaction via R1 and R4 but exothermic along R2 and R3 respectively. Also, \(\Delta_rG^o_{\text{rxn}} \) across reaction routes revealed that, the product obtained were thermodynamically feasible (R2 also more feasible).

Tables 7 and 8 reveal that reaction of BrO radical with the sample proceeded in two steps: (1) transition state formation and (2) product formation. According to the Gibb’s free energies of the two steps computed, the rate determining step (RDS) of
each reaction channel was identified on the basis of $\Delta G_1 > \Delta G_0$. Thus, the second steps i.e. product formation were the RDS. The rate determining steps are the slowest steps in the reaction between the HFE and the radical specie that was investigated.

The results from Tables 9 and 10 show that there were four H-atom abstraction carbon sites of H$_2$CCH(OCH$_3$)CHF$_2$ which are $-\text{CHF}_2$, $-\text{CH}$, $-\text{OCH}_3$ and $-\text{CH}_3$ groups. This eventually led to formation of four transition states (TS1, TS2, TS3 and TS4) as the sample was reacting with BrO radical. For each transition state of the radical investigated with sample, the C–H bond of the abstracting hydrogen atom and newly formed bond between H and O atoms were noted. The intrinsic reaction coordinates (IRC) calculation performed on all transition states at the same level were characterized by the occurrence of an imaginary frequencies as illustrated in same Tables (9 and 10 respectively). This therefore proved that there exists chemical connection between transition states and reactants as well as products of all reaction channels for radical involved. Also, during entrance and exit channels (R1–R4) of this reaction, pre–reactive complexes (RC1, RC2, RC3 and RC4) and post–reactive complexes (PC1, PC2, PC3 and PC4) formed have been validated as recommended by Baidya and his coworkers in 2017. In addition, formation of hydrogen bond was observed in the pre–reactive and post–reactive complexes between Oxygen atom of BrO radical with H-atom in the H$_2$CCH(OCH$_3$)CHF$_2$ which was as a result of weak force of attraction. Thus, this implies that all the reaction channels can even proceed in an indirect mechanism manner.

Table 11 illustrates the variations in BR$_{BrO}$, k$_{BrO}$, as well as E$_{a,BrO}$ of sample’s reaction with BrO radical investigated. The k$_{BrO}$ along the channels R1 and R2 were greater than the k$_{HOF}$ across channels R3 as well as R4. The extremely higher BR$_{BrO}$ value along channel R1 is due to the chemical influence of Fluorine atoms at C1.

3.2 Rate constant computation

The rate constants for reaction channels R1, R2, R3 and R4 were computed using the TST equation (7) couple with Wigner’s H-abstraction tunneling correction at an absolute temperature of 298.15 K. The lowest energy conformer of H$_2$CCH(OCH$_3$)CHF$_2$ molecule was considered for H-abstraction reaction with atmospheric radical (BrO). The sample’s reaction with radical passed through four channels with transition states: TS1, TS2, TS3 and TS4 respectively been formed. The total rate constant value at 298.15 K was estimated according to an expression (13). The computed rate constant values obtained using an improved single-point calculation (DFT/M06-2X/6-311++G(2df,2p)) were given in Table 11. The total estimated rate for HFE + BrO was 4.34*10$^{-06}$ cm$^{-3}$ molecule$^{-1}$ sec$^{-1}$.

3.3 Atmospheric implications

The atmospheric lifetime of H$_2$CCH(OCH$_3$)CHF$_2$ (τ_{eff}) was estimated via the assumption that its atmospheric removal is through its reaction with BrO radical. So, it was estimated using expression (16). i.e.

$$\tau_{eff} = \frac{1}{k_{BrO} * [BrO]}$$

Where, $\tau_{BrO} = (k_{BrO} * [BrO])^{-1}$ (18)

If the global average atmospheric BrO radical concentration is taken as 3.0*10$^{-7}$ molecule cm$^{-3}$ and the calculated total value of k$_{BrO}$ is 4.34*10$^{-06}$ cm$^{-3}$ molecule$^{-1}$ sec$^{-1}$. The atmospheric lifetime of H$_2$CCH(OCH$_3$)CHF$_2$ have been recorded as 1.8 years.

3.4 Global warming potentials (GWPs)

The global warming potentials of H$_2$CCH(OCH$_3$)CHF$_2$ molecule was estimated at the DFT/M06-2X/6-311++G(2df,2p) based on the integrated-time radiative forcing spontaneous radiation of 1 kg CO$_2$ as a reference gas (Baidya et al., 2017; Orkin et al., 1999). The HFE’s GWPs was found relative to the CO$_2$ reference information using an equation 17. The GWPs obtained for HFE in 100-year time horizon is 165.30 while the GWP for CFC-11, the most vital CFC with numerous applications (100-year time horizon) is reported as 4600 (Baidya et al., 2017). In comparison, H$_2$CCH(OCH$_3$)CHF$_2$ with shorter estimated atmospheric lifetime and lower GWP is of lesser atmospheric and environmental effects than CFCs.

4. FIGURES
Fig. 1. 3D structures of the possible conformers of 1,1-difluoro-2-methoxypropane molecule.
Figure 2- 3D structures of optimized reacting species with BrO radical.

Figure 3- HFE vs BrO radical H-abstraction reaction channels (DFT/M06-2X/6-311++G(2df,2p)).
5. TABLES

Table 1 - Calculated energy (kJ mol$^{-1}$) of the optimized reacting species with BrO radical (298 K) at DFT/M06-2X/6-311++G** level of theory.

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>HFE (kJ mol$^{-1}$)</th>
<th>Radical (kJ mol$^{-1}$)</th>
<th>RC (kJ mol$^{-1}$)</th>
<th>TS (kJ mol$^{-1}$)</th>
<th>PC (kJ mol$^{-1}$)</th>
<th>P_{Major} (kJ mol$^{-1}$)</th>
<th>P_{Minor} (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>-1134.32</td>
<td>-6955.47</td>
<td>-8089.87</td>
<td>-8089.32</td>
<td>-8089.89</td>
<td>-1131.86</td>
<td>-6956.99</td>
</tr>
<tr>
<td>R2</td>
<td>-1134.32</td>
<td>-6955.47</td>
<td>-8089.85</td>
<td>-8089.42</td>
<td>-8090.22</td>
<td>-1131.95</td>
<td>-6956.99</td>
</tr>
<tr>
<td>R3</td>
<td>-1134.32</td>
<td>-6955.47</td>
<td>-8089.66</td>
<td>-8089.52</td>
<td>-8090.32</td>
<td>-1131.89</td>
<td>-6956.99</td>
</tr>
<tr>
<td>R4</td>
<td>-1134.32</td>
<td>-6955.47</td>
<td>-8089.89</td>
<td>-8089.62</td>
<td>-8090.28</td>
<td>-1131.94</td>
<td>-6956.99</td>
</tr>
</tbody>
</table>

Table 2 - Improved Calculated energy (kJ mol$^{-1}$) of the optimized reacting species with BrO radical (298 K) at DFT/M06-2X/6-311++G(2df,2p) level of theory.

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>HFE (kJ mol$^{-1}$)</th>
<th>Radical (kJ mol$^{-1}$)</th>
<th>RC (kJ mol$^{-1}$)</th>
<th>TS (kJ mol$^{-1}$)</th>
<th>PC (kJ mol$^{-1}$)</th>
<th>P_{Major} (kJ mol$^{-1}$)</th>
<th>P_{Minor} (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>-1134.39</td>
<td>-6955.56</td>
<td>-8089.85</td>
<td>-8089.30</td>
<td>-8089.78</td>
<td>-1131.94</td>
<td>-6957.08</td>
</tr>
<tr>
<td>R2</td>
<td>-1134.39</td>
<td>-6955.56</td>
<td>-8089.84</td>
<td>-8089.40</td>
<td>-8090.21</td>
<td>-1132.02</td>
<td>-6957.08</td>
</tr>
<tr>
<td>R3</td>
<td>-1134.39</td>
<td>-6955.56</td>
<td>-8089.86</td>
<td>-8089.49</td>
<td>-8090.35</td>
<td>-1131.96</td>
<td>-6957.08</td>
</tr>
<tr>
<td>R4</td>
<td>-1134.39</td>
<td>-6955.56</td>
<td>-8089.88</td>
<td>-8089.59</td>
<td>-8090.30</td>
<td>-1132.02</td>
<td>-6957.08</td>
</tr>
</tbody>
</table>

P_{Major}: Major product = hydrofluoroether radical & P_{Minor}: Minor product = HOBr

Table 3 - Calculated enthalpy (kJ mol$^{-1}$) of the optimized reacting species with BrO radical (298 K) at DFT/M06-2X/6-311++G** level of theory.

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>HFE (kJ mol$^{-1}$)</th>
<th>Radical (kJ mol$^{-1}$)</th>
<th>RC (kJ mol$^{-1}$)</th>
<th>TS (kJ mol$^{-1}$)</th>
<th>PC (kJ mol$^{-1}$)</th>
<th>P_{Major} (kJ mol$^{-1}$)</th>
<th>P_{Minor} (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>338.40</td>
<td>12.54</td>
<td>349.61</td>
<td>327.38</td>
<td>352.09</td>
<td>307.06</td>
<td>44.25</td>
</tr>
<tr>
<td>R2</td>
<td>338.40</td>
<td>12.54</td>
<td>349.28</td>
<td>322.22</td>
<td>356.49</td>
<td>304.84</td>
<td>44.25</td>
</tr>
<tr>
<td>R3</td>
<td>338.40</td>
<td>12.54</td>
<td>351.70</td>
<td>323.40</td>
<td>361.40</td>
<td>306.76</td>
<td>44.25</td>
</tr>
<tr>
<td>R4</td>
<td>338.40</td>
<td>12.54</td>
<td>349.64</td>
<td>330.17</td>
<td>361.75</td>
<td>307.26</td>
<td>44.25</td>
</tr>
</tbody>
</table>

Table 4 - Improved Calculated enthalpy (kJ mol$^{-1}$) of the optimized reacting species with BrO radical (298 K) at DFT/M06-2X/6-311++G(2df,2p) level of theory.

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>HFE (kJ mol$^{-1}$)</th>
<th>Radical (kJ mol$^{-1}$)</th>
<th>RC (kJ mol$^{-1}$)</th>
<th>TS (kJ mol$^{-1}$)</th>
<th>PC (kJ mol$^{-1}$)</th>
<th>P_{Major} (kJ mol$^{-1}$)</th>
<th>P_{Minor} (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>339.15</td>
<td>12.86</td>
<td>350.88</td>
<td>328.39</td>
<td>351.26</td>
<td>307.98</td>
<td>44.63</td>
</tr>
<tr>
<td>R2</td>
<td>339.15</td>
<td>12.86</td>
<td>350.45</td>
<td>323.45</td>
<td>355.90</td>
<td>305.97</td>
<td>44.63</td>
</tr>
<tr>
<td>R3</td>
<td>339.15</td>
<td>12.86</td>
<td>353.56</td>
<td>325.78</td>
<td>359.89</td>
<td>307.16</td>
<td>44.63</td>
</tr>
<tr>
<td>R4</td>
<td>339.15</td>
<td>12.86</td>
<td>351.34</td>
<td>331.80</td>
<td>359.28</td>
<td>307.49</td>
<td>44.63</td>
</tr>
</tbody>
</table>

Table 5 - Thermodynamics data on H-abstraction reaction channels (R1–R4) of the HFE with BrO radical calculated at DFT/M06-2X/6-311++G** Density Functional Theory.

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>$\Delta_{c}H_{\text{rxn}}^{\circ}$ (kJ mol$^{-1}$)</th>
<th>$\Delta_{c}G_{\text{rxn}}^{\circ}$ (kJ mol$^{-1}$)</th>
<th>$\Delta_{c}E_{\text{rxn}}^{\circ}$ (kJ mol$^{-1}$)</th>
<th>ΔG^\ddagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>-0.37</td>
<td>-4.93</td>
<td>940.75</td>
<td>205.31</td>
</tr>
<tr>
<td>R2</td>
<td>-1.85</td>
<td>-7.81</td>
<td>857.21</td>
<td>200.49</td>
</tr>
<tr>
<td>R3</td>
<td>0.07</td>
<td>-4.41</td>
<td>907.77</td>
<td>198.11</td>
</tr>
<tr>
<td>R4</td>
<td>0.57</td>
<td>-4.27</td>
<td>860.86</td>
<td>209.65</td>
</tr>
</tbody>
</table>
Table 6 - Thermodynamics data on H-abstraction reaction channels (R1–R4) of the HFE with BrO radical calculated at DFT/M06-2X/6-311++G(2df,2p) Density Functional Theory.

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>$\Delta H^\circ_{\text{run}}$ (kJ mol$^{-1}$)</th>
<th>$\Delta r G^\circ_{\text{run}}$ (kJ mol$^{-1}$)</th>
<th>$\Delta r E^\circ_{\text{run}}$ (kJ mol$^{-1}$)</th>
<th>ΔG^\dagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0.60</td>
<td>-4.22</td>
<td>928.21</td>
<td>205.62</td>
</tr>
<tr>
<td>R2</td>
<td>-1.41</td>
<td>-7.63</td>
<td>847.31</td>
<td>201.42</td>
</tr>
<tr>
<td>R3</td>
<td>-0.22</td>
<td>-5.00</td>
<td>901.84</td>
<td>201.08</td>
</tr>
<tr>
<td>R4</td>
<td>0.11</td>
<td>-5.10</td>
<td>843.65</td>
<td>212.11</td>
</tr>
</tbody>
</table>

Table 7 - DFT/M06-2X/6-311++G** thermodynamics parameters for the steps involved in the four HFEs reaction channels (R1-R4) with BrO radical

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>$\Delta H^#$ (kJ mol$^{-1}$)</th>
<th>$\Delta G^#$ (kJ mol$^{-1}$)</th>
<th>ΔH^\dagger_z (kJ mol$^{-1}$)</th>
<th>ΔG^\dagger_z (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>-23.56</td>
<td>-150.55</td>
<td>23.93</td>
<td>103.06</td>
</tr>
<tr>
<td>R2</td>
<td>-28.72</td>
<td>-158.38</td>
<td>26.87</td>
<td>102.79</td>
</tr>
<tr>
<td>R3</td>
<td>-27.54</td>
<td>-157.24</td>
<td>27.61</td>
<td>102.09</td>
</tr>
<tr>
<td>R4</td>
<td>-20.77</td>
<td>-145.56</td>
<td>21.34</td>
<td>103.18</td>
</tr>
</tbody>
</table>

$\Delta G^\#$ = Gibb’s free energy of transition state, ΔG^\dagger_z = Gibb’s free energy of product formation

$\Delta H^\#$ = Enthalpy of transition state formation, ΔH^\dagger_z = Enthalpy of product formation

Table 9 - IRC calculation results on transition states of each reaction channel for BrO radical at DFT/M06-2X/6-311++G**

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>Transition states</th>
<th>Intrinsic reaction coordinate (IRC) in cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>TS1</td>
<td>i418</td>
</tr>
<tr>
<td>R2</td>
<td>TS2</td>
<td>i369</td>
</tr>
<tr>
<td>R3</td>
<td>TS3</td>
<td>i297</td>
</tr>
<tr>
<td>R4</td>
<td>TS4</td>
<td>i180</td>
</tr>
</tbody>
</table>

Table 10 - IRC calculation results on transition states of each reaction channel for BrO radical at DFT/M06-2X/6-311++G(2df,2p)

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>Transition states</th>
<th>Intrinsic reaction coordinate (IRC) in cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>TS1</td>
<td>i520</td>
</tr>
<tr>
<td>R2</td>
<td>TS2</td>
<td>i450</td>
</tr>
<tr>
<td>R3</td>
<td>TS3</td>
<td>i397</td>
</tr>
<tr>
<td>R4</td>
<td>TS4</td>
<td>i280</td>
</tr>
</tbody>
</table>

Table 11 - BR, k and E_a of H-abstraction reaction of HFE with BrO radical at DFT/M06-2X/6-311++G(2df,2p)

<table>
<thead>
<tr>
<th>Reaction routes</th>
<th>BR$_{BrO}$</th>
<th>k_{BrO} (cm3 molecule$^{-1}$ sec$^{-1}$)</th>
<th>$E_a$$_{BrO}$ (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>94.50</td>
<td>4.10*10$^{-06}$</td>
<td>29.65</td>
</tr>
<tr>
<td>R2</td>
<td>2.53</td>
<td>1.10*10$^{-07}$</td>
<td>22.04</td>
</tr>
<tr>
<td>R3</td>
<td>1.80</td>
<td>7.80*10$^{-08}$</td>
<td>24.33</td>
</tr>
<tr>
<td>R4</td>
<td>1.18</td>
<td>5.10*10$^{-08}$</td>
<td>35.26</td>
</tr>
</tbody>
</table>
6. CONCLUSION

In this Insilco study, an oxidation reaction mechanism of 1,1-difluoro-2-methoxypropane with the BrO radical was investigated using two different levels of DFT (M06-2X/6-311+G** and M06-2X/6-311+G(2df,2p)). This resulted to H-abstraction from the molecule which was more favored at –OCH(CH₃) carbon site. The whole reaction was found to proceeded in four plausible reaction channels (R1, R2, R3 and R4) with R2 being thermodynamically and kinetically most favorable channel. An intrinsic reaction coordinate (IRC) calculation carried out proved the transition state most favorable channel. An intrinsic reaction coordinate (IRC) calculation carried out proved the transition state most favorable channel. An intrinsic reaction coordinate (IRC) calculation carried out proved the transition state most favorable channel.

ACKNOWLEDGEMENT

Mohammed Rufai Abubakar acknowledges the financial support of Petroleum Technology Development Fund (PTDF), Abuja, Nigeria, for providing a PTDF M.Sc. financial support of Petroleum Technology Development Fund (PTDF), Abuja, Nigeria, for providing a PTDF M.Sc. financial support of Petroleum Technology Development Fund (PTDF), Abuja, Nigeria, for providing a PTDF M.Sc. financial support.

REFERENCES

