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In sugarcane industries, process monitoring has the main purpose of maximizing sugar and 
ethanol production, meeting the quality parameters demanded by customers. The aim of this 
work was to identify industrial process variables that presented the greatest impacts on the 
quantity and quality of the produced sugar, by applying principal component analysis (PCA) 
and partial least squares regression (PLS) to the process data of a sugar and ethanol industry. 
The PCA correlation matrix highlighted the correlation between the presence of alcoholic 
flocs in sugar and the concentrations of starch and dextran in it. Both PCA and PLS showed 
that the color of the sugar was highly correlated to its moisture content. The first three 
principal components accounted for 40.92% of the total data variability. 
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  R E S U M O 
 

 Nas indústrias de cana-de-açúcar, o monitoramento de processos tem como principal objetivo 
maximizar as produções de açúcar e etanol, atendendo aos parâmetros de qualidade exigidos 
pelos clientes. O objetivo deste trabalho foi identificar as variáveis do processo industrial que 
apresentaram os maiores impactos sobre a quantidade e a qualidade do açúcar produzido, 
aplicando a análise por componentes principais (PCA) e a regressão por mínimos quadrados 
parciais (PLS) aos dados de processo de uma usina produtora de açúcar e etanol. A matriz 
de correlações do PCA destacou a correlação entre a presença de flocos alcoólicos no açúcar 
e sua concentração de amido e dextrana. Ambas análises mostraram que a cor do açúcar 
esteve altamente correlacionada à sua umidade. Os três primeiros componentes principais 
responderam, juntos, por 40,92% da variabilidade total dos dados. 
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1. INTRODUCTION 

Process monitoring is becoming increasingly necessary 
in modern industries in order to meet higher demands in terms 
of production, cost reduction, and product quality, according to 
the requirements of the consumer market and sustainability 
standards. The most widely applied traditional method of 
process monitoring is the model-based method, which uses 
conservation laws and physical/chemical relations. As long as 
the model is reliable, this method tends to provide more accurate 
and decisive results, compared to other methods. However, for 
modern and complicated industrial processes, constructing 
models that accurately characterize them becomes extremely 
hard, time-consuming, expensive, and even impossible (Ge et 
al., 2013; Kano and Nakagawa, 2008; Sun et al., 2001; Yin et 
al., 2015). 

For complex processes, or processes for which a first-
principle model is unknown, knowledge-based methods can be 
used. These methods use the accumulated knowledge of expert 
plant operators and, therefore, tend to be more intuitive. 
However, many years of effort and experience are necessary to 
create a reliable knowledge base. On the other hand, data-based 
methods do not require any process modeling or operator 
knowledge. These techniques have been applied in various 
industrial sectors in recent years, with the purpose of extracting 
as much information as possible, based on large amounts of 
available data, in order to model, monitor, and control processes 
(Ge et al., 2013; Qin, 2012; Sun et al., 2001; Yin et al., 2015). 

Among data-based methods, multivariate statistical 
techniques have become popular in process monitoring and fault 
diagnosis, particularly principal component analysis (PCA) and 
partial least squares regression (PLS), due mainly to their 
simplicity, low computational effort, and ability to handle large 
numbers of highly correlated variables (Johnson and Wichern, 
2007; Sun et al., 2001; Yin et al., 2014). 

PCA is a multivariate statistical method that enables 
reduction of the dimensionality of large amounts of correlated 
data, preserving the significant variability information extracted 
from process measurements. It has been successfully applied to 
image analysis, pattern recognition, data compression, time 
series prediction, and process monitoring (Chen et al., 2015; 
Jiang et al., 2013; Kano and Nakagawa, 2008; Ku et al., 1995; 
Ramburan et al., 2011; Rodushkin et al., 2011; Santchurn et al., 
2012; Yin et al., 2014). PLS is another multivariate statistical 
method widely used in model construction, process monitoring 
and control, and fault detection. This technique enables the 
prediction of key performance indicators of a process by the 
application of partial least squares regression to uncorrelated 
variables generated from measurements (Kano and Nakagawa, 
2008; Qin, 2012; Roy and Roy, 2008; Yin et al., 2014). 

In the sugarcane industry, monitoring of agricultural and 
industrial processes aims at increasing agroindustrial efficiency, 
by increasing the sugar and ethanol production per hectare of 
cultivated sugarcane, and at ensuring the maintenance of quality 
parameters demanded by the consumer market (Fernandes, 
2011). Therefore, the aim of this work was to use these methods 
to analyze the industrial process data of a sugar and ethanol 
industry located in São Paulo State, collected during the 
2015/2016 harvest season. This was expected to assist in 
understanding the relations among the variables and in 
identifying those that had the greatest impacts on the quantity 

and quality of the sugar produced. The equations of the PCA 
and PLS methods are provided in Appendix A. 

2. METHODS 

Table 1 presents 50 process variables that were 
monitored on 101 production days, between 1 June and 31 
October 2015. Days with an absence of information for at least 
one of the 50 variables were excluded from the analyses. 

Figure 1 shows a flow diagram of the sugar 
crystallization in the two-boiling system of the industry studied, 
indicating the syrup, massecuite, and molasses streams listed in 
Table 1. Light molasses could also be recycled to the B vacuum 
pans, depending on the goals for each period of the season. 

 

Figure 1 - Flow diagram of sugar crystallization (two-
boiling system). 

The data were normalized to zero mean and unit 
variance, followed by construction of a normalized data matrix 
that was used in the PCA and PLS procedures. Both sets of 
analyses were performed using Minitab software. Cross-
validation was used to determine the numbers of components to 
be retained in the PLS models, calculating the predictive ability 
of potential models, excluding one observation at a time (leave-
one-out method). 

By identifying the highest coefficients, ���, in the PCA 
correlation matrix, the most highly correlated variables among 
the 50 original variables were identified and analyzed. The 
highest values for coefficients ��,��  and ��,��  enabled 
identification of the variables most highly correlated with sugar 
production and sugar color, respectively. A coefficient matrix 
was obtained by applying PLS regression with the sugar 
production variable as the key performance indicator and all the 
other parameters as input variables. The variables presenting the 
highest coefficients were compared with the variables identified 
by the PCA as being highly correlated with sugar production. A 
similar comparison procedure was applied between the highest 
PLS coefficients, with sugar color as the key performance 
indicator, and the variables shown by PCA to be highly 
correlated with sugar color. 

The percentages of total variability contained in each 
linear combination were calculated from the eigenvalues 
resulting from decomposition of the PCA correlation matrix. 
The first three principal components were analyzed according 
to the original variables with the highest loadings in them. 
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Table 1 – Process variables considered in the PCA and PLS procedures. 
Variable Unit Reference for chemical analysis 

1 Processed cane t/day - 
2 Concentration of TRS (total reducing sugars) in cane kg/t ICUMSA, 2015 
3 Cane cutting time (average time from cutting to processing) h - 
4 Concentration of mineral impurities in cane kg/t UDOP, 2014 a 
5 Concentration of vegetal impurities in cane kg/t UDOP, 2014 b 
6 Dextran concentration in cane mg/brix Chen and Chou, 1993 
7 Time use % - 
8 Vapor pressure psi - 
9 Water pressure in vacuum pan condensers psi - 
10 Brixa of clarified syrup % ICUMSA, 2015 
11 Polb of clarified syrup % ICUMSA, 2015 
12 Purityc of clarified syrup % - 
13 pH of clarified syrup - ICUMSA, 2015 
14 ICUMSAd color of clarified syrup IU ICUMSA, 2015 
15 Clarified syrup turbidity IU ICUMSA, 2015 
16 Brixa of heavy molasses % ICUMSA, 2015 
17 Polb of heavy molasses % ICUMSA, 2015 
18 Purityc of heavy molasses % - 
19 Brixa of light molasses % ICUMSA, 2015 
20 Polb of light molasses % ICUMSA, 2015 
21 Purityc of light molasses % - 
22 Brixa of A massecuite % ICUMSA, 2015 
23 Polb of A massecuite % ICUMSA, 2015 
24 Purityc of A massecuite % - 
25 Brixa of B massecuite % ICUMSA, 2015 
26 Polb of B massecuite % ICUMSA, 2015 
27 Purityc of B massecuite % - 
28 Brixa of magma % ICUMSA, 2015 
29 Polb of magma % ICUMSA, 2015 
30 Purityc of magma % - 
31 Brixa of final molasses % ICUMSA, 2015 
32 Polb of final molasses % ICUMSA, 2015 
33 Purityc of final molasses % - 
34 Sugar production sacks (50 kg)/day - 
35 Sugar polarization °Z ICUMSA, 2015 
36 ICUMSAd color of sugar IU ICUMSA, 2015 
37 Sugar moisture % ICUMSA, 2015 
38 Ash concentration in sugar % ICUMSA, 2015 
39 Sulfite concentration in sugar mg/kg ICUMSA, 2015 
40 Insoluble solids in sugar n. (1 to 10) ICUMSA, 2015 
41 Concentration of black points in sugar n./100 g Lopes and Borges, 2004 
42 Concentration of magnetizable particles in sugar mg/kg Lopes and Borges, 2004 
43 pH of sugar - ICUMSA, 2015 
44 Sugar turbidity NTU ICUMSA, 2015 
45 Dextran concentration in sugar mg/kg ICUMSA, 2015 
46 Starch concentration in sugar mg/kg Lopes and Borges, 2004 
47 Alcoholic flocs in sugar - Lopes and Borges, 2004 
48 Sugar filterability min Lopes and Borges, 2004 
49 Particle mean size of sugar crystals mm ICUMSA, 2015 
50 Coefficient of variation of sugar crystals % ICUMSA, 2015 

aBrix: mass percentage of dissolved solids. 
bPol: mass percentage of dissolved sucrose. 
cPurity: mass percentage of sucrose in dissolved solids (purity = pol/brix). 
dICUMSA: International Commission for Uniform Methods of Sugar Analysis. 
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3. RESULTS AND DISCUSSION 

In this section, the results obtained in the PCA and PLS 
procedures are presented and discussed. First, the correlation 
matrix is analyzed, then the PCA and PLS results for sugar 
production and sugar color are compared. Finally, the first three 
principal components are presented. 

3.1 Analysis of the correlation matrix 

Table 2 shows the variables that presented the highest 
correlations in the correlation matrix. High correlations between 
brix and pol, or between pol and purity, for the same material, 
occurred for the clarified syrup (��	,�� = 0.9909 ), heavy 
molasses (���,�� = 0.8834), light molasses (���,�	 = 0.8752), 
B massecuite (���,�� = 0.8513), magma (���,�� = 0.8100), and 
final molasses (���,�� = 0.8070). Brix is the mass percentage of 
dissolved solids, while pol is the polarimetric reading of the 
solution, considered as its sucrose mass percentage. Purity is the 
relation between pol and brix, hence representing the mass 
percentage of sucrose in the dissolved solids. The high values of ��� in these cases indicated that the purities of these materials 
did not vary significantly. Therefore, pol was intimately related 
to brix during the entire period. 

Time use was calculated taking into account the hours 
when the mills were broken or at standstill, and indicated the 
percentage of time during which cane was effectively processed 
on a particular day. Hence, the value reflected the degree of 
stability of the plant on that day. Processed cane showed a high 
correlation with time use (��,� = 0.9591), which was not an 
obvious relation. The mills had the possibility of rotation 
velocity adjustments, so high time use did not necessarily 
indicate a high quantity of processed cane. For instance, on a 
day when the mills had operated for 24 hours, but at low 
velocity, the amount of processed cane would be low, while time 
use would continue to be 100%. However, the high correlation 
obtained for the plant studied showed that the amount of 
processed cane was related to the effective hours of milling, 
irrespective of velocity adjustments. 

The dextran concentration in the sugar presented high 
correlations with alcoholic flocs (���,�� = 0.8591 ) and the 

starch concentration (���,�� = 0.8071) in the sugar. Dextran is 
a polysaccharide resulting from the action on sucrose of 
microorganisms of the genus Leuconostoc. Its presence in sugar 
increases the viscosity of sugar solutions and consequently 
negatively affects products that use this sugar as an ingredient, 
such as candies and cereal bars (Oliveira et al., 2007).  

On the other hand, starch is a polysaccharide produced 
by the sugarcane itself, and is found mainly in the leaves, 
internodes, and tops. Starch is partially removed during juice 
treatment and sugar manufacture, but part of it remains in the 
process and ends up in the sugar crystals. The greatest impact of 
a high starch concentration is associated with the difficulty of 
sugar solution filtration in food industries where sugar is 
dissolved and filtered (Oliveira et al., 2007). 

Alcoholic flocs are polysaccharide precipitates that 
appear in hydroalcoholic solutions produced using sugar with 
the presence of these compounds as an ingredient. Although 
they do not affect product quality and can be easily re-dissolved 
under slight agitation, alcoholic flocs may cause the impression 
of a deteriorated or contaminated product (Oliveira et al., 2007). 
After the dextran concentration in the sugar, the second highest 
correlation of alcoholic flocs was with the starch concentration 
in the sugar (���,�� = 0.7310). 

The results indicated that dextran and starch in sugar 
were responsible for the emergence of alcoholic flocs in 
solutions. Lemos et al. (2013) reached a similar conclusion in 
assessment of the influence of different concentrations of 
dextran and starch in sugar on the formation of alcoholic flocs 
in solutions. The tests, which were performed using acidic 
beverages and hydroalcoholic solutions with volumetric 
concentrations between 55 and 89%, showed positive 
correlations between dextran and starch in sugar and floc 
formation. Merheb et al. (2016) studied the effects of dextran 
and starch on the appearance of alcoholic flocs in sugar crystals 
produced using crystallization by cooling or evaporation. In the 
tests performed using evaporation crystallization, the 
appearance of alcoholic flocs was significantly influenced by 
the presence of dextran, starch, and the combined action of the 
two contaminants (Merheb et al., 2016). 

 

Table 2 – Ten highest correlations between variables � and � of the correlation matrix. ��� value Variable � Variable � 
0.9909 10 – Brix of clarified syrup 11 – Pol of clarified syrup 

0.9591 1 – Processed cane 7 – Time use 

0.8834 16 – Brix of heavy molasses 17 – Pol of heavy molasses 

0.8752 19 – Brix of light molasses 20 – Pol of light molasses 

0.8591 45 – Dextran concentration in sugar 47 – Alcoholic flocs in sugar 

0.8513 26 – Pol of B massecuite 27 – Purity of B massecuite 

0.8101 36 – ICUMSA color of sugar 37 – Sugar moisture 

0.8100 28 – Brix of magma 29 – Pol of magma 

0.8071 45 – Dextran concentration in sugar 46 – Starch concentration in sugar 

0.8070 32 – Pol of final molasses 33 – Purity of final molasses 
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The increase in mechanized harvesting of raw cane has 
led to vegetal components with high starch contents entering the 
industrial process. Furthermore, the greater area of raw cane 
exposed to microorganism contamination has also resulted in 
increased dextran formation during the period between cutting 
and processing (Merheb et al., 2016). Oliveira et al. (2002) 
concluded that longer periods of time between cane cutting and 
processing, as well as high temperatures and high moisture 
levels, contribute to increased contamination and consequently 
to higher dextran production. 

Table 3 presents the correlations between the 
concentrations of starch and dextran in the sugar and the 
variables related to sugarcane quality. Both starch and dextran 
showed negative correlations with the concentration of TRS in 
the cane, which represents sugarcane purity. Positive 
correlations with cutting time confirmed the conclusion reached 
by Oliveira et al. (2002). Concentrations of mineral and vegetal 
impurities and starch in the cane also showed positive 
correlations with dextran and starch in the sugar. 

The ICUMSA color of the sugar showed a high 
correlation with sugar moisture content (���,�� = 0.8101 ). 
Color is the main parameter for sugar classification, and high 
values of this variable reflect visible yellowing of the crystals. 
Sugar with high color negatively impacts the quality of products 
whose desirable attributes involve color or transparency, such 
as beverages, candies, and ice creams (Oliveira et al., 2007). In 
the industry studied here, the main product was type 2 white 
crystals, with color below 150 IU. The sugar moisture content 
after passing through the dryers is recommended to be less than 
0.1%, in order to avoid problems during sugar conditioning, 
such as crystal agglomeration and hardening, loss of brightness, 
sucrose inversion, and yellowing (Sarantópoulos et al., 2002). 

High correlation between these two important sugar 
quality parameters indicated that high color was related to liquid 
occlusion and inclusion. Occlusion is the presence of a molasses 
film on the crystal surface, which also increases the sugar 
moisture content, and is usually a consequence of centrifugation 

failures. On the other hand, inclusion is the presence of molasses 
inside the crystals, which mainly occurs during crystal growth. 
Molasses inclusion is associated with abrupt changes in 
supersaturation conditions during crystallization, and is favored 
by high growth rates and large crystals (Mullin, 2001). The 
presence of compounds such as starch and dextran, which can 
modify the crystalline habit by inhibition of one of the faces, 
also favors liquid inclusion (Schlumbach et al., 2017). Molasses, 
which is rich in contaminants and colored compounds, 
decreases sugar purity and can also contribute to increasing its 
color, as discussed in detail in Section 3.2, where the PCA and 
PLS results for sugar color are presented. 

3.2 PCA and PLS results for sugar production and sugar 
color 

Table 4 shows the variables that presented the highest 
correlations with sugar production, according to the PCA 
correlation matrix, together with the variables that presented the 
highest coefficients in PLS, using sugar production as the key 
performance indicator. 

Figure 2 illustrates the coefficients resulting from PLS 
applied to sugar production. Following application of the cross-
validation method for prediction of the key performance 
indicator, the model with two principal components was 
selected, with adjusted R² equal to 0.7968 and predicted R² 
equal to 0.7090. 

In both analyses, sugar production was highly correlated 
with the variables related to the quantity of sucrose available for 
sugar manufacturing: processed cane, concentration of TRS in 
the cane, and purity of the clarified syrup. In both analyses, time 
use also presented high correlations with sugar production. As 
described in Section 3.1, this variable reflects the degree of 
stability of the industrial plant. Days with high time use had high 
sugar production, because in addition to the material available 
for processing, sugar production is also highly dependent on 
process stability. 

 

Table 3 – Correlations between dextran and starch in sugar and sugarcane characteristics. 
 45 – Dextran concentration in sugar 46 – Starch concentration in sugar 

2 – Concentration of TRS in cane -0.2760 -0.4056 

3 – Cane cutting time 0.3677 0.3202 

4 – Concentration of mineral impurities in cane 0.4550 0.3641 

5 – Concentration of vegetal impurities in cane 0.2369 0.1701 

6 – Dextran concentration in cane 0.2283 0.2641 

Table 4 – Variables highly correlated with sugar production, according to the PCA correlation matrix and PLS 
regression. 

PCA correlation matrix PLS regression ��,�� value Variable � ��,  value Variable � 
0.6944 7 – Time use 0.1954 1 – Processed cane 

0.6771 1 – Processed cane 0.1909 7 – Time use 

0.6129 2 – Concentration of TRS in cane 0.1127 12 – Purity of clarified syrup 

-0.5607 36 – ICUMSA color of sugar -0.1083 5 – Concentration of vegetal impurities in cane 

0.5413 12 – Purity of clarified syrup 0.1071 2 – Concentration of TRS in cane 
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Figure 2 - PLS coefficients with sugar production as the key performance indicator. 

 

In the PCA, the correlation with sugar color was 
negative, indicating that high sugar production was highly 
correlated to low sugar color (better quality sugar). This was 
because during the period studied, the days with high sugar 
production were also days with high plant stability, when quality 
control of the sugar was easier. On days when the plant was 
unstable, in addition to producing less sugar, it was more 
difficult to maintain sugar quality. This reinforces the need for 
a good quality of maintenance, in order to ensure high time use 
and the associated process stability. 

The PLS results also highlighted the coefficient for the 
concentration of vegetal impurities in the cane, consisting of 
leaves, tops, and roots, which are parts of the plant with high 
starch contents. In the juice treatment, more specifically during 
its heating, the starch concentration is reduced because high 
temperatures cause its flocculation. However, raw cane milling, 
which has increased with mechanized harvesting, has led to 
significant increases of vegetal impurity concentrations, making 
it more difficult to totally remove starch during the juice 
treatment. Part of this impurity remains in the process and ends 
up delaying the crystallization, hence explaining the high and 
negative value of this coefficient in the regression (Merheb, 
2014). 

Table 5 lists the variables showing the highest 
correlations with sugar color in the PCA correlation matrix, 
together with those that presented the highest coefficients in the 
PLS regression, using the ICUMSA color of the sugar as the key 
performance indicator.  

In this case, the model with three principal components 
was selected for PLS regression, with adjusted R² equal to 

0.8854 and predicted R² equal to 0.7816. Figure 3 shows the 
coefficients resulting from the model. 

Sugar moisture content presented the highest correlation 
with sugar color, as well as the highest coefficient in the PLS 
regression. The relation between these two variables, discussed 
previously in Section 3.1, is related to the molasses present in 
the crystals due to the phenomena of occlusion and inclusion. 
Molasses is rich in contaminants and, as Table 5 shows, the 
presence of these contaminants in the crystals was responsible 
for increased sugar color. 

The ash concentration in sugar is the content of inorganic 
compounds, such as potassium, sodium, calcium, and iron in the 
form of chlorides, sulfates, carbonates, silicates, and sulfites, 
and its determination is based on electrical conductivity. These 
saline substances originate from the sugarcane juice itself and 
are incorporated during the industrial process, especially the 
juice treatment (Merheb, 2014). Schlumbach et al. (2017) 
studied the contribution of molasses inclusion to increased sugar 
color by determination of the transfer of ash from the syrup to 
the crystals, adopting the assumption that the presence of ash in 
the crystals resulted from inclusion. 

Determination of the black point concentration in sugar, 
which is another quality parameter, is performed by counting 
the particles of color contrasting with that of the sugar crystals, 
such as rust, iron dusts, bagasse, caramel compounds, and soot 
(Lopes and Borges, 2004). Black points can be visually 
perceived in beverages and transparent liquids, or perceived by 
the tongue in candies and chocolates (Oliveira et al., 2007).  

 

 

Table 5 – Variables highly correlated with the ICUMSA color of sugar, according to the PCA correlation matrix and the 
PLS regression. 

PCA correlation matrix PLS regression ��,�! value Variable � ��,�! value Variable � 
0.8101 37 – Sugar moisture 0.2139 37 – Sugar moisture 

0.7926 38 – Ash concentration in sugar 0.2029 38 – Ash concentration in sugar 

0.7724 41 – Concentration of black points in sugar -0.1500 35 – Sugar polarization 

-0.7702 35 – Sugar polarization 0.1277 44 – Sugar turbidity 

0.7414 44 – Sugar turbidity 0.1272 41 – Concentration of black points in sugar 
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Figure 3 - PLS coefficients using the ICUMSA color of sugar as the key performance indicator. 

 

Sugar polarization is the sucrose percentage in sugar, and 
it presented a negative correlation with the color. In other words, 
the lower the polarization, the higher the sugar color value. 
Sugar with low polarization has high concentrations of 
contaminants such as dextran, starch, and ash, which are 
associated with lower product quality (Oliveira et al., 2007).  

Lastly, sugar turbidity reflects the obstruction of light 
passing through a sugar solution, due to the presence of particles 
in suspension that cause dispersion of the transmitted light. 
Turbidity is often an undesirable characteristic in soft drinks and 
alcoholic beverages, and is directly related to the presence of 
dextran and starch in sugar, as shown in the evaporation 
crystallization experiments performed by Merheb et al. (2016). 
In the correlation matrix, sugar color also presented high 
positive correlations with the concentrations of these two 
contaminants in the sugar crystals: 0.5557 for starch and 0.5843 
for dextran. 

3.3 Principal components of process variability 

Table 6 shows the eigenvectors corresponding to the first 
three principal components obtained from decomposition of the 
correlation matrix, the eigenvalues referring to each one, and the 
loadings of each original variable in them. The three highest 
loadings for each principal component are highlighted in bold 
italic. The variance proportion for each principal component 
was calculated by dividing the eigenvalue corresponding to it by 
the sum of all the eigenvalues. Figure 4 shows the eigenvalues 
for each component. The first three principal components 
together accounted for 40.92% of the total data variability. 

 

Figure 4 - Eigenvalues for each principal component. 

 

In the linear combination of the 50 original variables that 
composed the first principal component, PC1, the variables with 
the highest loadings were ICUMSA color of the sugar, ash 
concentration in the sugar, and concentration of black points in 
the sugar, with loadings of 0.2757, 0.2583, and 0.2557, 
respectively. In PC1, responsible for 18.82% of the total data 
variability, the major factors were three important variables 
related to sugar quality, highlighting the substantial variation of 
sugar quality in the period studied, resulting from the high 
instability of the process. This instability was associated with 
mechanical problems in the mills and with disarms of the 
electric power generator. These problems occurred frequently 
during the whole period and consequently caused high 
instability in the process flow rates and the vapor pressure. 

The second principal component, PC2, responsible for 
14.06% of the total variability, highlighted the variables pol of 
the clarified syrup, brix of the clarified syrup, and pol of the final 
molasses, with loadings of 0.2830, 0.2825, and 0.2448, 
respectively. These variables are related to the sugar 
concentration in the sugar manufacturing streams: the clarified 
syrup, which is the input of crystallization, and the final 
molasses, which is the output of this process. PC2 suggested that 
greater control of the concentrations of the sugar manufacturing 
process streams would play a key role in reducing plant 
variability. 

The original variables with the highest loadings in the 
third principal component, PC3, were the concentration of 
vegetal impurities in the cane, processed cane, and time use, 
with loadings of 0.3126, -0.2936, and -0.2796, respectively. 
PC3, responsible for 8.04% of the total variability, highlighted 
the sugarcane characteristics and the industry stability indicator. 

4. CONCLUSIONS 

The variables that presented the highest correlations with 
sugar production were time use, processed cane, concentration 
of TRS in the cane, ICUMSA color of the sugar, and purity of 
the clarified syrup. In the PLS regression, the variables with the 
highest coefficients, using sugar production as the key 
performance indicator, were processed cane, time use, purity of 
the clarified syrup, concentration of vegetal impurities, and TRS 
in the cane. Both PCA and PLS showed that high sugar 
production occurred on days with high stability, high cane 
milling, and high sugarcane purity, which also resulted in better 
sugar quality. 
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Table 6 – Eigenvectors, eigenvalues, and individual and cumulative variance percentages for the first three principal 
components. 
 Variable PC1 PC2 PC3 
1 Processed cane -0.0940 0.0476 -0.2936 
2 Concentration of TRS in cane -0.2055 0.1502 -0.1581 
3 Cane cutting time 0.0836 0.0976 -0.1594 
4 Concentration of mineral impurities in cane 0.1388 0.1293 0.0749 
5 Concentration of vegetal impurities in cane 0.0803 0.0570 0.3126 
6 Dextran concentration in cane 0.1247 -0.0201 0.1394 
7 Time use -0.1143 0.0534 -0.2796 
8 Vapor pressure -0.0505 0.1827 -0.0185 
9 Water pressure in vacuum pan condensers -0.0335 0.1204 -0.0096 
10 Brix of clarified syrup -0.0496 0.2825 -0.0354 
11 Pol of clarified syrup -0.0694 0.2830 -0.0466 
12 Purity of clarified syrup -0.1574 0.0991 -0.0949 
13 pH of clarified syrup 0.0391 -0.0672 -0.1402 
14 ICUMSA color of clarified syrup 0.1760 -0.0562 0.0347 
15 Clarified syrup turbidity 0.1657 0.0386 0.0694 
16 Brix of heavy molasses -0.0670 0.1442 -0.0345 
17 Pol of heavy molasses -0.0696 0.2437 0.0228 
18 Purity of heavy molasses -0.0172 0.2357 0.1147 
19 Brix of light molasses 0.0257 0.1211 -0.1091 
20 Pol of light molasses -0.0102 0.2046 -0.0185 
21 Purity of light molasses -0.0679 0.2015 0.1659 
22 Brix of A massecuite -0.0494 0.0616 -0.0893 
23 Pol of A massecuite  -0.1217 0.1707 0.1188 
24 Purity of A massecuite -0.1081 0.1586 0.2160 
25 Brix of B massecuite -0.0558 0.0756 -0.1552 
26 Pol of B massecuite -0.0003 0.2113 0.1061 
27 Purity of B massecuite 0.0331 0.1955 0.2142 
28 Brix of magma 0.0301 0.0610 -0.2593 
29 Pol of magma -0.0180 0.0774 -0.2282 
30 Purity of magma -0.0781 0.0292 0.0550 
31 Brix of final molasses -0.0603 0.0855 -0.1637 
32 Pol of final molasses -0.1037 0.2448 0.0720 
33 Purity of final molasses -0.0835 0.2354 0.2028 
34 Sugar production -0.2240 0.0476 -0.2441 
35 Sugar polarization -0.2538 -0.1177 0.0615 
36 ICUMSA color of sugar 0.2757 0.0730 -0.0030 
37 Sugar moisture 0.2394 0.0519 -0.0416 
38 Ash concentration in sugar 0.2583 -0.0354 -0.0814 
39 Sulfite concentration in sugar 0.0643 0.0116 -0.2544 
40 Insoluble solids in sugar 0.2215 0.1176 -0.0895 
41 Concentration of black points in sugar 0.2557 0.1321 -0.1053 
42 Concentration of magnetizable particles in sugar 0.1817 0.0403 -0.0238 
43 pH of sugar -0.0280 0.1661 -0.1882 
44 Sugar turbidity 0.2524 0.1162 -0.1271 
45 Dextran concentration in sugar 0.2228 0.1641 -0.0169 
46 Starch concentration in sugar 0.2387 0.1081 -0.0289 
47 Alcoholic flocs in sugar 0.1874 0.1726 0.0396 
48 Sugar filterability 0.1823 -0.0255 -0.0741 
49 Particle mean size of sugar 0.0178 -0.1735 0.0536 
50 Coefficient of variation of sugar 0.0955 -0.0648 -0.0712 
 Eigenvalues 9.41 7.03 4.02 
 Individual percentage (%) 18.82 14.06 8.04 
 Cumulative percentage (%) 18.82 32.88 40.92 
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When analyzing sugar color, both PCA and PLS 
highlighted variables associated with sugar quality: sugar 
moisture, ash and black point concentrations, sugar polarization, 
and turbidity. The analyses indicated that sugar with high color 
was related to high concentrations of non-sucrose compounds 
such as water, dextran, starch, inorganic salts, soot, bagasse, 
rust, and caramel compounds, which were present in the crystals 
due to the occlusion and inclusion of molasses. 

The first three PCA principal components together 
accounted for 40.92% of the total data variability. PC1, 
accounting for 18.82%, was mainly composed of variables 
related to sugar quality: color, ash concentration, and black 
point concentration. In the case of PC2, responsible for 14.06%, 
the major factors were variables associated with the sugar 
concentrations in the crystallization streams: brix and pol of the 
clarified syrup, and pol of the final molasses. PC3, responsible 
for 8.04% of the variation, highlighted variables related to 
sugarcane characteristics and process stability: concentration of 
vegetal impurities in cane, processed cane, and time use. 

A P P E N D I X  A 

PCA – Considering " measurements of the industrial process, 
each one with m variables, after scaling data to zero mean and 
unit variance, the normalized data matrix, # , is defined by 
Equation 1. Data normalizing is required when the measured 
variables differ in magnitude, in order to avoid an improper 
influence of one variable or another in the analysis. 

# = $%�� %�� … %�'%�� %�� … %�'⋮%)� ⋮%)�   ⋱… ⋮%)'
,  ∈  ℛ)⨯'                              (1) 

The correlation matrix, 0, is given by Equation 2, and 
has the form shown in Equation 3. 1 = �)2� #3#                                                                                                   (2) 

1 = $ ��� ��� … ��'��� ��� … ��'⋮�'� ⋮�'�   ⋱… ⋮�''
,  ∈  ℛ'⨯'                             (3) 

Significant variability information is extracted from the 
data by performing the singular value decomposition of 1, as 
shown in Equation 4, where 4 ∈  ℛ'⨯' is an orthogonal matrix 
and 5 ∈  ℛ'⨯' is a diagonal matrix. The columns of 4 are the 
eigenvectors and the elements from the principal diagonal of 5 
are the eigenvalues 6�, … , 6' of 1. �)2� #3# = 4Λ43                                                                                            (4) 

According to the magnitude of the eigenvalues, Z and Λ 
can be divided as shown in Equations 5 and 6. 4 = 849: 4;<=>                                                                                            (5) 

5 = ?59: 00 5;<=@                                                                                            (6) 
Let A denote the number of principal components. Then, 

49: ∈ ℛ'⨯B , called principal subspace, contains the 
eigenvectors corresponding to the first A large eigenvalues in 5, 
while 4;<= ∈ ℛ'⨯C'2BD, called residual subspace, contains the 
eigenvectors corresponding to the last CE − AD  small 
eigenvalues in 5 (Yin et al., 2014). 

PLS – Let G  be the normalized data matrix, containing " 
measurements, each one with H  variables, and I  be the key 
performance indicator matrix, with " measurements, each one 
with E variables, as shown in Equations 7 and 8. 

G = $J�� J�� … J�KJ�� J�� … J�K⋮J)� ⋮J)�   ⋱… ⋮J)K
,  ∈  ℛ)⨯K                                           (7) 

I = $L�� L�� … L�'L�� L�� … L�'⋮L)� ⋮L)�   ⋱… ⋮L)'
,  ∈  ℛ)⨯'                               (8) 

The latent variables, M, are defined by Equation 9, where N is the number of latent variables. O = CM� M�     ⋯ MQD  ∈  ℛ)⨯Q                                                          (9) 

Based on the projection of G and I onto latent variables, 
the correlation between G  and I  can be determined by 
Equations 10 and 11. G = OR3 + GT = GU + GT                                                                           (10) I = OV3 + WX = GY + WX                                                                   (11) 

where R ∈  ℛK⨯Q and V ∈  ℛ'⨯Q are the loading matrices of G 
and I, respectively. GU is highly correlated to I. GT and WX  are 
residual subspaces and assumed to be uncorrelated to G e I, 
respectively. According to the correlation between G  and I , 
given by Equations 10 and 11, matrices O  and Y ∈  ℛK⨯' , 
called coefficient matrix, can be determined by Equations 12 
and 13, respectively. O = GZ                                                                                                            (12) Y = ZV3                                                                                                         (13) 
where R3Z = Z3R = [Q⨯Q  and Z ∈  ℛK⨯Q . Z  is called loading 
matrix. Thus, the coefficient matrix, Y, can be used to predict 
the key performance indicators from process measurements 
(Yin et al., 2014). 
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