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In sugarcane industries, process monitoring hasrttaén purpose of maximizing sugar and
ethanol production, meeting the quality parametigmanded by customers. The aim of this
work was to identify industrial process variablésitt presented the greatest impacts on the
quantity and quality of the produced sugar, by gp@ principal component analysis (PCA)
and partial least squares regression (PLS) to tteepss data of a sugar and ethanol industry.
The PCA correlation matrix highlighted the corretat between the presence of alcoholic
flocs in sugar and the concentrations of starch dedtran in it. Both PCA and PLS showed
that the color of the sugar was highly correlatedits moisture content. The first three
principal components accounted for 40.92% of thel tata variability.

RESUMO

Nas industrias de cana-de-acUcar, 0 monitorameptprdcessos tem como principal objetivo
maximizar as produgdes de aglcar e etanol, atermland parametros de qualidade exigidos
pelos clientes. O objetivo deste trabalho foi idferar as variaveis do processo industrial que
apresentaram os maiores impactos sobre a quanti@gadejualidade do acucar produzido,

aplicando a analise por componentes principais (PEA regressao por minimos quadrados
parciais (PLS) aos dados de processo de uma usodufora de aclcar e etanol. A matriz

de correlagbes do PCA destacou a correlacdo enpreeaenca de flocos alcodlicos no agucar
e sua concentracdo de amido e dextrana. Ambassasainostraram que a cor do acucar
esteve altamente correlacionada a sua umidade r&sprimeiros componentes principais

responderam, juntos, por 40,92% da variabilidad@ltdos dados.
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1. INTRODUCTION and quality of the sugar produced. The equationhefPCA
and PLS methods are provided in Appendix A.

Process monitoring is becoming increasingly neecgss®, METHODS
in modern industries in order to meet higher dersanderms
of production, cost reduction, and product quakiggording to
the requirements of the consumer market and suadtiity
standards. The most widely applied traditional rmodthof
process monitoring is the model-based method, whisbs
conservation laws and physical/chemical relatidxslong as
the model is reliable, this method tends to prowee accurate Figure 1 shows a flow diagram of the sugar
and decisive results, compared to other methodwaeier, for crystallization in the two-boiling system of thelirstry studied,
modern and complicated industrial processes, aatdig indicating the syrup, massecuite, and molassearsdisted in
models that accurately characterize them becom&snealy Table 1. Light molasses could also be recycleti¢c® vacuum
hard, time-consuming, expensive, and even impasg®e et pans, depending on the goals for each period cdethson.
al., 2013; Kano and Nakagawa, 2008; Sun et al.1 2% et

Table 1 presents 50 process variables that were
monitored on 101 production days, between 1 Jurk Zn
October 2015. Days with an absence of informatwratf least
one of the 50 variables were excluded from theyaesl

al., 2015). [ ——
For complex processes, or processes for whichst fir %‘* Bv::.:': " ":i%?geea"g
principle model is unknown, knowledge-based methazdsbe “;:;5”"’
used. These methods use the accumulated knowldéadggert E'"“’““”“"I '
plant operators and, therefore, tend to be moraitive. B
However, many years of effort and experience aoessary to crystallizers

A

create a reliable knowledge base. On the other, luaid-based
crystallizers

methods do not require any process modeling or abper
knowledge. These techniques have been applied riousa
industrial sectors in recent years, with the puepafsextracting centrifuges
as much information as possible, based on largeuatacof
available data, in order to model, monitor, andtc@iprocesses

(Ge etal., 2013; Qin, 2012; Sun et al., 2001; &tial., 2015). Sugar

Among data-based methods, multivariate statistical _ _ o
techniques have become popular in process morgtanid fault ~ Figure 1 - Flow diagram of sugar crystallization (wo-
diagnosis, particularly principal component anay§lCA) and boiling system).

partial least squares regression (PLS), due maimlyheir The data were normalized to zero mean and unit
simplicity, low computational effort, and ability handle large variance, followed by construction of a normalizida matrix
numbers of highly correlated variables (Johnson\aichern, that was used in the PCA and PLS procedures. Betth af
2007; Sun et al., 2001; Yin et al., 2014). analyses were performed using Minitab software. s&ro

PCA is a multivariate statistical method that eeabl Validation was used to determine the numbers ofomorents to
reduction of the dimensionality of large amountsofrelated P€ retained in the PLS models, calculating theiptieé ability
data, preserving the significant variability infcation extracted °f Potential models, excluding one observation e (leave-
from process measurements. It has been succesafylied to ©N€-out method).

image analysis, pattern recognition, data compoassiime By identifying the highest coefficients;;, in the PCA

series prediction, and process monitoring (Chealet2015;  ¢o rejation matrix, the most highly correlated aates among
Jiang et al., 2013; Kan.o and Nakagawa, 2008_' Kal.el995; the 50 original variables were identified and amaty The
Ramburan et al., 2011; Rodushkin et al., 2011;®amh et al., highest values for coefficients;;, and c;55 enabled

2012; Yin et al., 2014). PLS is another multivagiatatistical
method widely used in model construction, processitaring
and control, and fault detection. This techniquabies the
prediction of key performance indicators of a psscéy the
application of partial least squares regressiomrtoorrelated
varlable_s generated from measurements (Kano andgdala, highest coefficients were compared with the vadalidentified
2008; Qin, 2012; Roy and Roy, 2008; Yin et al., 201 by the PCA as being highly correlated with sugadpction. A

In the sugarcane industry, monitoring of agricidtemd similar comparison procedure was applied betweerhiphest
industrial processes aims at increasing agroindlisfficiency, PLS coefficients, with sugar color as the key perfance
by increasing the sugar and ethanol productionheetare of indicator, and the variables shown by PCA to behlyig
cultivated sugarcane, and at ensuring the maintenaiquality correlated with sugar color.

parameters demanded by the consumer market (F&®and 1o percentages of total variability contained acte
2011). Therefore, the aim of this work was to Umesé methods linear combination were calculated from the eigéumes

to analyze the industrial process data of a sugdrethanol oq,ing from decomposition of the PCA correlatioatrix.

industry located in S&o Paulo State, collected ndurthe 114 first three princi :

. o principal components were analyaecording
2015/2016 harvest season. This was expected BLaSSI 1, ye griginal variables with the highest loadifgghem.
understanding the relations among the variables and

identifying those that had the greatest impactshenquantity

|

Magma

Final molasses

4

centrifuges |molasses

identification of the variables most highly corteld with sugar
production and sugar color, respectively. A coéfit matrix
was obtained by applying PLS regression with thgasu
production variable as the key performance indicatal all the
other parameters as input variables. The varigiskesenting the



JCEC - ISSN 2527-1075.

Table 1 — Process variables considered in the PCA&PLS

procedures.
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44
45
46
47
48
49
50

Variable
Processed cane

Concentration of TRS (total reducing sugars) inecan
Cane cutting time (average time from cutting togessing)

Concentration of mineral impurities in cane
Concentration of vegetal impurities in cane
Dextran concentration in cane

Time use
Vapor pressure
Water pressure in vacuum pan condensers
Brix2 of clarified syrup
PoP of clarified syrup
Purity® of clarified syrup
pH of clarified syrup
ICUMSA- color of clarified syrup
Clarified syrup turbidity
Brix? of heavy molasses
PoP of heavy molasses
Purity® of heavy molasses
Brix? of light molasses
PoP of light molasses
Purity® of light molasses
Brix2 of A massecuite
PoP of A massecuite
Purity® of A massecuite
Brix? of B massecuite
PoP of B massecuite
Purity* of B massecuite
Brix? of magma
PoP of magma
Purity® of magma
Brix? of final molasses
PoP of final molasses
Purity® of final molasses
Sugar production
Sugar polarization
ICUMSA! color of sugar
Sugar moisture
Ash concentration in sugar
Sulfite concentration in sugar
Insoluble solids in sugar
Concentration of black points in sugar
Concentration of magnetizable particles in sugar
pH of sugar
Sugar turbidity
Dextran concentration in sugar
Starch concentration in sugar
Alcoholic flocs in sugar
Sugar filterability
Particle mean size of sugar crystals
Coefficient of variation of sugar crystals

aBrix: mass percentage of dissolved solids.
bPol: mass percentage of dissolved sucrose.
‘Purity: mass percentage of sucrose in dissolvedss(durity = pol/brix).

dCUMSA: International Commission for Uniform MethodESugar Analysis.

t/day
kglt
h
kglt
kglt
mg/brix
%
psi
psi
%
%
%
9]
9]
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

sacks (50 kg)/day

°Z

U

%

%
mg/kg

n. (1 to 10)

n./100 g
mg/kg

NTU
mg/kg
mg/kg

min
mm
%

Reference for chemical analysis

ICUMSA, 2015

UDOP, 2014 a
UDOP, 2014 b
Chen and Chou, 1993

ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015

ICUMSA, 2015
ICUMSA, 2015

ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
Lopes and Borges, 2004
Lopes and Borges, 2004
ICUMSA, 2015
ICUMSA, 2015
ICUMSA, 2015
Lopes and Borges, 2004
Lopes and Borges, 2004
Lopes and Borges, 2004
ICUMSA, 2015
ICUMSA, 2015
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3. RESULTS AND DISCUSSION

In this section, the results obtained in the PCA BhS
procedures are presented and discussed. Firstothelation
matrix is analyzed, then the PCA and PLS resultssfagar
production and sugar color are compared. Findlly first three
principal components are presented.

3.1 Analysis of the correlation matrix

starch concentratiortfs ., = 0.8071) in the sugar. Dextran is
a polysaccharide resulting from the action on sserof
microorganisms of the genusuconostoclts presence in sugar
increases the viscosity of sugar solutions and emuently
negatively affects products that use this sugamaisigredient,
such as candies and cereal bars (Oliveira et@G0.7)2

On the other hand, starch is a polysaccharide pextiu
by the sugarcane itself, and is found mainly in thaves,
internodes, and tops. Starch is partially removednd juice

Table 2 shows the variables that presented theekightreatment and sugar manufacture, but part of itaresin the

correlations in the correlation matrix. High coatibns between process and ends up in the sugar crystals. Théegtéapact of
brix and pol, or between pol and purity, for thensamaterial, a high starch concentration is associated withdiffeculty of
occurred for the clarified syrupc{y,; = 0.9909), heavy sugar solution filtration in food industries wheseigar is

molasses dj¢ 1, = 0.8834), light molassescig,, = 0.8752),
B massecuitect ,, = 0.8513), magma s, = 0.8100), and

dissolved and filtered (Oliveira et al., 2007).

Alcoholic flocs are polysaccharide precipitatesttha

final molassescg 33 = 0.8070). Brix is the mass percentage of,nnear in hydroalcoholic solutions produced usingas with

dissolved solids, while pol is the polarimetric daegy of the
solution, considered as its sucrose mass percerRagéy is the
relation between pol and brix, hence representirgy hass
percentage of sucrose in the dissolved solids higtevalues of
c;; in these cases indicated that the purities ofetimeaterials
did not vary significantly. Therefore, pol was mttely related
to brix during the entire period.

Time use was calculated taking into account therdiou

when the mills were broken or at standstill, andidated the
percentage of time during which cane was effecfipebcessed
on a particular day. Hence, the value reflecteddbgree of
stability of the plant on that day. Processed cdmeved a high
correlation with time usec{, = 0.9591), which was not an
obvious relation. The mills had the possibility aftation
velocity adjustments, so high time use did not ssasly
indicate a high quantity of processed cane. Faait®, on a
day when the mills had operated for 24 hours, hutow
velocity, the amount of processed cane would be\dvile time
use would continue to be 100%. However, the highetation
obtained for the plant studied showed that the arhaf
processed cane was related to the effective hdursilling,
irrespective of velocity adjustments.

The dextran concentration in the sugar presentgd ht

correlations with alcoholic flocscfs,, = 0.8591) and the

the presence of these compounds as an ingredi¢thbu§h
they do not affect product quality and can be gasidissolved
under slight agitation, alcoholic flocs may cause impression
of a deteriorated or contaminated product (Oliveiral., 2007).
After the dextran concentration in the sugar, #wad highest
correlation of alcoholic flocs was with the stamdncentration
in the sugardys ,, = 0.7310).

The results indicated that dextran and starch gaisu
were responsible for the emergence of alcoholicsflon
solutions. Lemos et al. (2013) reached a similarchesion in
assessment of the influence of different concebotrat of
dextran and starch in sugar on the formation aftadtic flocs
in solutions. The tests, which were performed usauidic
beverages and hydroalcoholic solutions with voluioet
concentrations between 55 and 89%, showed positive
correlations between dextran and starch in sugar feot
formation. Merheb et al. (2016) studied the effagftslextran
and starch on the appearance of alcoholic flossigar crystals
produced using crystallization by cooling or evagian. In the
tests performed using evaporation crystallizatiothe
appearance of alcoholic flocs was significantlyiuahced by
the presence of dextran, starch, and the combictzhaof the
wo contaminants (Merheb et al., 2016).

Table 2 — Ten highest correlations between variabdéd and j of the correlation matrix.
c;j value Variable i Variable j

0.9909 10 — Brix of clarified syrup
0.9591 1 — Processed cane

0.8834 16 — Brix of heavy molasses
0.8752 19 — Brix of light molasses
0.8591 45 — Dextran concentration in sugar
0.8513 26 — Pol of B massecuite
0.8101 36 — ICUMSA color of sugar
0.8100 28 — Brix of magma

0.8071 45 — Dextran concentration in sugar
0.8070 32 — Pol of final molasses

11 — Pol of clarified syrup
7 — Time use
17 — Pol of heavy molasses
20 — Pol of light molasses
47 — Alcoholic flocs in sugar
27 — Purity of B massecuite
37 — Sugar moisture
29 — Pol of magma
46 — Starch concentration in sugar
33 — Purity of final molasses
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The increase in mechanized harvesting of raw casse
led to vegetal components with high starch contentsring the
industrial process. Furthermore, the greater afeaw cane
exposed to microorganism contamination has alsoltegs in
increased dextran formation during the period betweutting
and processing (Merheb et al., 2016). Oliveira let(2002)
concluded that longer periods of time between cartiéng and
processing, as well as high temperatures and higistune
levels, contribute to increased contamination asmsequently
to higher dextran production.

Table 3 presents the correlations between
concentrations of starch and dextran in the sugeat the
variables related to sugarcane quality. Both starah dextran
showed negative correlations with the concentrabibmRS in
the cane, which represents sugarcane purity. RP®s
correlations with cutting time confirmed the corsitin reached
by Oliveira et al. (2002). Concentrations of mirienad vegetal

impurities and starch in the cane also showed ipesit

correlations with dextran and starch in the sugar.

The ICUMSA color of the sugar showed a high

correlation with sugar moisture contentsfs;; = 0.8101).

Color is the main parameter for sugar classificgtiand high
values of this variable reflect visible yellowin§tbe crystals.
Sugar with high color negatively impacts the qyadit products
whose desirable attributes involve color or transpey, such
as beverages, candies, and ice creams (Oliveal, &007). In
the industry studied here, the main product wag ®pwvhite
crystals, with color below 150 IU. The sugar maistaontent
after passing through the dryers is recommendée tess than
0.1%, in order to avoid problems during sugar ctoiing,

such as crystal agglomeration and hardening, bisgghtness,
sucrose inversion, and yellowing (Sarantépoulcd.e2002).

High correlation between these two important su
quality parameters indicated that high color wéateel to liquid

occlusion and inclusion. Occlusion is the presari@gemolasses

film on the crystal surface, which also increases sugar
moisture content, and is usually a consequencertfitugation

ffiailures. On the other hand, inclusion is the pneeef molasses
inside the crystals, which mainly occurs duringstay growth.
Molasses inclusion is associated with abrupt change
supersaturation conditions during crystallizatiand is favored
by high growth rates and large crystals (Mullin02D The
presence of compounds such as starch and dexthach wan
modify the crystalline habit by inhibition of ond the faces,
also favors liquid inclusion (Schlumbach et al.12p Molasses,

which is rich in contaminants and colored compounds

decreases sugar purity and can also contributecteasing its
olor, as discussed in detail in Section 3.2, wileeePCA and

t
S results for sugar color are presented.

3.2 PCA and PLS results for sugar production and syar
color
t Table 4 shows the variables that presented theebkigh
correlations with sugar production, according t@ tRCA
correlation matrix, together with the variablestihi@sented the
highest coefficients in PLS, using sugar productisrthe key
performance indicator.

Figure 2 illustrates the coefficients resultingnfré®LS
applied to sugar production. Following applicatafrthe cross-
validation method for prediction of the key perf@mce
indicator, the model with two principal componentgas
selected, with adjusted R2 equal to 0.7968 and igext] R2
equal to 0.7090.

In both analyses, sugar production was highly ¢ated
with the variables related to the quantity of sseravailable for
sugar manufacturing: processed cane, concentrafidiRS in
the cane, and purity of the clarified syrup. Inthabalyses, time
use also presented high correlations with sugadymtion. As
described in Section 3.1, this variable reflects tlegree of
stability of the industrial plant. Days with higime use had high
g[lgar production, because in addition to the nealtesailable
for processing, sugar production is also highly edefent on
process stability.

g

Table 3 — Correlations between dextran and starchisugar and sugarcane characteristics.

45 — Dextran

2 — Concentration of TRS in cane
3 — Cane cutting time
4 — Concentration of mineral impurities in ca
5 — Concentration of vegetal impurities in ca
6 — Dextran concentration in cane

Table 4 — Variables highly correlated with sugar poduction,

concentration in sugar 46 — Starch concentration in sugar

-0.2760 -0.4056
0.3677 0.3202
0.4550 0.3641
0.2369 0.1701
0.2283 0.2641

according to the PCA correlation matrix and PLS

regression.
PCA correlation matrix PLS regression

;i34 Value Variable i m;, value Variable i
0.6944 7 — Time use 0.1954 1 — Processed cane
0.6771 1 — Processed cane 0.1909 7 — Time use
0.6129 2 — Concentration of TRS in cane 0.1127 12 — Purity of clarified syrup
-0.5607 36 — ICUMSA color of sugar -0.1083 5 — Concentration of vegetal impurities in cane
0.5413 12 — Purity of clarified syrup 0.1071 2 — Concentration of TRS in cane



JCEC - ISSN 2527-1075.

o 0.1954  p.qa909

0.1127

Standardized Coefficient

19 22

.||||I|III||]I 'Il e

25 28 31 35 38 41 44 47 50

Vanable

Figure 2 - PLS coefficients with sugar production a the key performance indicator.

In the PCA, the correlation with sugar color wa8.8854 and predicted R? equal to 0.7816. Figurb®vs the

negative, indicating that high sugar production waghly

correlated to low sugar color (better quality sjigahis was
because during the period studied, the days wig Isugar
production were also days with high plant stahilithen quality
control of the sugar was easier. On days when ket pvas
unstable, in addition to producing less sugar, &swmore
difficult to maintain sugar quality. This reinfoic¢he need for
a good quality of maintenance, in order to ensigh time use
and the associated process stability.

The PLS results also highlighted the coefficient tfee
concentration of vegetal impurities in the canensisting of
leaves, tops, and roots, which are parts of thatplath high
starch contents. In the juice treatment, more $ipatty during
its heating, the starch concentration is reducezhire high
temperatures cause its flocculation. However, rameanilling,
which has increased with mechanized harvesting, lédso
significant increases of vegetal impurity concetitres, making
it more difficult to totally remove starch durindpet juice

treatment. Part of this impurity remains in theqass and ends

up delaying the crystallization, hence explainihg high and
negative value of this coefficient in the regreassi{®erheb,
2014).

Table 5 lists the variables showing the highe%\f1

correlations with sugar color in the PCA correlatimatrix,

together with those that presented the highesficissdts in the
PLS regression, using the ICUMSA color of the swagathe key
performance indicator.

In this case, the model with three principal congria
was selected for PLS regression, with adjusted qRfaleto

coefficients resulting from the model.

Sugar moisture content presented the highest etioel
with sugar color, as well as the highest coeffitianthe PLS
regression. The relation between these two vasabliscussed
previously in Section 3.1, is related to the matasgresent in
the crystals due to the phenomena of occlusionimeidsion.
Molasses is rich in contaminants and, as Tabledwshthe
presence of these contaminants in the crystalsresgnsible
for increased sugar color.

The ash concentration in sugar is the contentarfemnic
compounds, such as potassium, sodium, calciumyamndh the
form of chlorides, sulfates, carbonates, silicatey] sulfites,
and its determination is based on electrical cotidtyz These
saline substances originate from the sugarcane jtself and
are incorporated during the industrial processeesgfly the
juice treatment (Merheb, 2014). Schlumbach et a017)
studied the contribution of molasses inclusiomtweéased sugar
color by determination of the transfer of ash fribva syrup to
the crystals, adopting the assumption that theepiasof ash in
the crystals resulted from inclusion.

Determination of the black point concentration ugar,
hich is another quality parameter, is performedcbynting
e particles of color contrasting with that of theyar crystals,
such as rust, iron dusts, bagasse, caramel compoand soot
(Lopes and Borges, 2004). Black points can be ihisua
perceived in beverages and transparent liquidseareived by
the tongue in candies and chocolates (Oliveird g2@07).

Table 5 — Variables highly correlated with the ICUMSA color of sugar, according to the PCA correlatiommatrix and the

PLS regression.
PCA correlation matrix PLS regression

ci36 Value Variable i m; 3¢ Value Variable i
0.8101 37 — Sugar moisture 0.2139 37 — Sugar moisture
0.7926 38 — Ash concentration in sugar 0.2029 38 — Ash concentration in sugar
0.7724 41 — Concentration of black points in sugar -0.1500 35 — Sugar polarization
-0.7702 35 — Sugar polarization 0.1277 44 — Sugar turbidity
0.7414 44 — Sugar turbidity 0.1272 41 — Concentration of black points in sugar
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Figure 3 - PLS coefficients using the ICUMSA colopof sugar as the key performance indicator.

Sugar polarization is the sucrose percentage iarsagd
it presented a negative correlation with the cdloather words,
the lower the polarization, the higher the sugaorcealue.
Sugar with low polarization has high concentratiook
contaminants such as dextran, starch, and ash,hwdie
associated with lower product quality (Oliveiraaét 2007).

Lastly, sugar turbidity reflects the obstruction light
passing through a sugar solution, due to the poesefparticles
in suspension that cause dispersion of the tratesmitght.
Turbidity is often an undesirable characteristisafft drinks and
alcoholic beverages, and is directly related topghesence of
dextran and starch in sugar, as shown in the ewa#ipor
crystallization experiments performed by Merhelale(2016).
In the correlation matrix, sugar color also presdntigh
positive correlations with the concentrations otgh two
contaminants in the sugar crystals: 0.5557 focktand 0.5843
for dextran.

3.3 Principal components of process variability

Table 6 shows the eigenvectors corresponding tbrite
three principal components obtained from decomjosdf the
correlation matrix, the eigenvalues referring toleane, and the
loadings of each original variable in them. Thee#hhighest
loadings for each principal component are highkghin bold
italic. The variance proportion for each princigaimponent
was calculated by dividing the eigenvalue corresjpumto it by
the sum of all the eigenvalues. Figure 4 showstbenvalues
for each component. The first three principal congrds
together accounted for 40.92% of the total datéisdity.

1

Eigenvalue

1 8 15 22 29 36 43 50
Component

O o= R W B 3~ DO

Figure 4 - Eigenvalues for each principal component

In the linear combination of the 50 original vatebthat
composed the first principal component,;PiBe variables with
the highest loadings were ICUMSA color of the sugssh
concentration in the sugar, and concentration aflpoints in
the sugar, with loadings of 0.2757, 0.2583, and5%r/2
respectively. In PC responsible for 18.82% of the total data
variability, the major factors were three importamriables
related to sugar quality, highlighting the substdntariation of
sugar quality in the period studied, resulting froihe high
instability of the process. This instability wasasiated with
mechanical problems in the mills and with disarnisthe
electric power generator. These problems occunreguéntly
during the whole period and consequently causech hig
instability in the process flow rates and the vap@ssure.

The second principal component, £@sponsible for
14.06% of the total variability, highlighted theriables pol of
the clarified syrup, brix of the clarified syrumdpol of the final
molasses, with loadings of 0.2830, 0.2825, and 4824
respectively. These variables are related to thgarsu
concentration in the sugar manufacturing streahesctarified
syrup, which is the input of crystallization, anbet final
molasses, which is the output of this process.dRGgested that
greater control of the concentrations of the suganufacturing
process streams would play a key role in reducitantp
variability.

The original variables with the highest loadingsthe
third principal component, BC were the concentration of
vegetal impurities in the cane, processed cane,tiaral use,
with loadings of 0.3126, -0.2936, and -0.2796, eetpely.
PG, responsible for 8.04% of the total variabilitygtilighted
the sugarcane characteristics and the industrylistabdicator.

4. CONCLUSIONS

The variables that presented the highest correlsitioth
sugar production were time use, processed canegntation
of TRS in the cane, ICUMSA color of the sugar, gudity of
the clarified syrup. In the PLS regression, thealdes with the
highest coefficients, using sugar production as #ey
performance indicator, were processed cane, timepusity of
the clarified syrup, concentration of vegetal inipes, and TRS
in the cane. Both PCA and PLS showed that high rsuga
production occurred on days with high stabilitygthicane
milling, and high sugarcane purity, which also teslin better
sugar quality.
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Table 6 — Eigenvectors, eigenvalues, and individuahd cumulative variance percentages for the firsthree principal

components.
Variable PC: PC PCs

1 Processed cane -0.0940 0.0476 -0.2936
2 Concentration of TRS in cane -0.2055 0.1502 -0.1581
3 Cane cutting time 0.0836 0.0976 -0.1594
4 Concentration of mineral impurities in cane 0.1388 0.1293 0.0749
5 Concentration of vegetal impurities in cane 0.0803 0.0570 0.3126
6 Dextran concentration in cane 0.1247 -0.0201 0.1394
7 Time use -0.1143 0.0534 -0.2796
8 Vapor pressure -0.0505 0.1827 -0.0185
9 Water pressure in vacuum pan condensers -0.0335 0.1204 -0.0096
10 Brix of clarified syrup -0.0496 0.2825 -0.0354
11 Pol of clarified syrup -0.0694 0.2830 -0.0466
12 Purity of clarified syrup -0.1574 0.0991 -0.0949
13 pH of clarified syrup 0.0391 -0.0672 -0.1402
14 ICUMSA color of clarified syrup 0.1760 -0.0562 0.0347
15 Clarified syrup turbidity 0.1657 0.0386 0.0694
16 Brix of heavy molasses -0.0670 0.1442 -0.0345
17 Pol of heavy molasses -0.0696 0.2437 0.0228
18 Purity of heavy molasses -0.0172 0.2357 0.1147
19 Brix of light molasses 0.0257 0.1211 -0.1091
20 Pol of light molasses -0.0102 0.2046 -0.0185
21 Purity of light molasses -0.0679 0.2015 0.1659
22 Brix of A massecuite -0.0494 0.0616 -0.0893
23 Pol of A massecuite -0.1217 0.1707 0.1188
24 Purity of A massecuite -0.1081 0.1586 0.2160
25 Brix of B massecuite -0.0558 0.0756 -0.1552
26 Pol of B masseculite -0.0003 0.2113 0.1061
27 Purity of B massecuite 0.0331 0.1955 0.2142
28 Brix of magma 0.0301 0.0610 -0.2593
29 Pol of magma -0.0180 0.0774 -0.2282
30 Purity of magma -0.0781 0.0292 0.0550
31 Brix of final molasses -0.0603 0.0855 -0.1637
32 Pol of final molasses -0.1037 0.2448 0.0720
33 Purity of final molasses -0.0835 0.2354 0.2028
34 Sugar production -0.2240 0.0476 -0.2441
35 Sugar polarization -0.2538 -0.1177 0.0615
36 ICUMSA color of sugar 0.2757 0.0730 -0.0030
37 Sugar moisture 0.2394 0.0519 -0.0416
38 Ash concentration in sugar 0.2583 -0.0354 -0.0814
39 Sulfite concentration in sugar 0.0643 0.0116 -0.2544
40 Insoluble solids in sugar 0.2215 0.1176 -0.0895
41 Concentration of black points in sugar 0.2557 0.1321 -0.1053
42 Concentration of magnetizable particles in sugar 0.1817 0.0403 -0.0238
43 pH of sugar -0.0280 0.1661 -0.1882
44 Sugar turbidity 0.2524 0.1162 -0.1271
45 Dextran concentration in sugar 0.2228 0.1641 -0.0169
46 Starch concentration in sugar 0.2387 0.1081 -0.0289
47 Alcoholic flocs in sugar 0.1874 0.1726 0.0396
48 Sugar filterability 0.1823 -0.0255 -0.0741
49 Particle mean size of sugar 0.0178 -0.1735 0.0536
50 Coefficient of variation of sugar 0.0955 -0.0648 -0.0712

Eigenvalues 9.41 7.03 4.02

Individual percentage (%) 18.82 14.06 8.04

Cumulative percentage (%) 18.82 32.88 40.92
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When analyzing sugar color, both PCA and PL3,. € R™*# , called principal subspace, contains the
highlighted variables associated with sugar qualgugar eigenvectors corresponding to the figsiarge eigenvalues i,
moisture, ash and black point concentrations, spgiarization, \yhile z,,. € R™*™-8 called residual subspace, contains the
and turbidity. The analyses indicated that sugéhn Wwgh color eigenvectors corresponding to the lagn—pg) small
was related to high concentrations of non-sucrasepounds eigenvalues int (Yin et al., 2014).
such as water, dextran, starch, inorganic salist, $mgasse,
rust, and caramel compounds, which were presgheiorystals PLS — Let U be the normalized data matrix, containiNg
due to the occlusion and inclusion of molasses. measurements, each one witlvariables, and’ be the key

erformance indicator matrix, witki measurements, each one

The first three PCA principal components togeth ith m variables, as shown in Equations 7 and 8.

accounted for 40.92% of the total data variabili®G,

accounting for 18.82%, was mainly composed of \des Uyr Uz U
related to sugar quality: color, ash concentratiamg black ;; _ [ Y21 Uzz Uz € RNxI @)
point concentration. In the case of Pf@sponsible for 14.06%, :
the major factors were variables associated with shgar Uyr Uyz . Upg
concentrations in the crystallization streams: lrid pol of the Y
o . . Yir Y12 1im
clarified syrup, and pol of the final molasses.sP@sponsible Vo1 Yoy o Yom N
for 8.04% of the variation, highlighted variableslated to ¥ ={ ":" 7: o | ERTT (8)
sugarcane characteristics and process stabilibcerdration of
. . . VN1 Yn2 wo YNm
vegetal impurities in cane, processed cane, arel tise. ) ] )
The latent variables, are defined by Equation 9, where
APPENDIX A y is the number of latent variables.
o . . T=(0 t; = t)eRrRVY 9)
PCA — Consideringv measurements of the industrial process, o .
each one with m variables, after scaling data to meean and Based on the projection 0fandY onto latent variables,

unit variance, the normalized data matkx, is defined by the correlation betweet/ and Y can be determined by
Equation 1. Data normalizing is required when theasured Equations 10 and 11.

yanables differ in rr_1agn|tude, in or<_jer to avoid ianproper ; _ rpt L o4 (10)
influence of one variable or another in the analysi

X114 Xyp o Xim Y =TQ! + E,=UM+E, (11)

x = X1 Y22 xz'm € RNxm 1 whereP € R™Y andQ € R™*Y are the loading matrices bf
: : K : andY, respectivelyl is highly correlated t&. U andE, are

N1 XNz . XNm residual subspaces and assumed to be uncorretatée Y,

respectively. According to the correlation betwégmandY,
given by Equations 10 and 11, matri®sndM € R>*™,
called coefficient matrix, can be determined by &@ns 12

The correlation matrixp, is given by Equation 2, and
has the form shown in Equation 3.

o= ﬁxtx (2nd 13, respectively.
T = UR (12)
€11 C12 Cim .
o= C?l c?2 Cz:n c gmxm 3) M = RQ | (1-3)
. whereP'R = R'P =I,,,, andR € RYY . R is called loading
Cmi Cmz e Cmm matrix. Thus, the coefficient matri¥{/, can be used to predict

Significant variability information is extractedoin the the key performance indicators from process measemes
data by performing the singular value decompositié®, as (Yin et al., 2014).
shown in Equation 4, whetee R™*™ is an orthogonal matrix
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can be divided as shown in Equations 5 and 6.
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