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Insilico modelling was executed on 28 C14-urea tetrandrine compounds as inhibitors of 
leukemic (HEL) cell lines using Quantitative Structure-Activity Relationship (QSAR) method. 
The structure of the inhibitors was correctly drawn, then geometrically optimized at Density 
Functional Theory (DFT) level (DFT/B3LYP/6-31G*) with Spartan 14 V1.1.4. Also, 
molecular descriptors of the inhibitors were calculated with PaDEL calculator, and the results 
were partitioned into training and test set after data pretreatment. The training set was used 
to generate a model by employing genetic function approximation in choosing best descriptors 
to form the model. The validation parameters of the model include; R2train as 0.8067, LOF as 
0.037, r 2(Qcv) as 0.6378, R2test as 0.7629 and ��2� as 0.6990 which have passed the criteria 
for acceptability of a QSAR model worldwide. In addition, the model depicted four (4) 
descriptors, AATS4v, AATS5i, AATSC5i, and GATS5m with positive mean effects signifying that 
increase in these descriptors will positively influence and increase the activity of the 
inhibitors. This study depicts a route in designing and synthesizing new C14-urea tetrandrine 
compounds with better inhibitory potentials. 
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  R E S U M O  
 

 A modelagem Insilico foi realizada em 28 compostos de tetrandrina C14-ureia como 
inibidores de linhagens leucêmicas (HEL) usando o método de Relação Estrutura-Atividade 
Quantitativa (QSAR). A estrutura dos inibidores foi corretamente desenhada, depois 
geometricamente otimizada ao nível da Teoria do Funcional da Densidade (DFT) (DFT / 
B3LYP / 6-31G *) com o Spartan 14 V1.1.4. Além disso, os descritores moleculares dos 
inibidores foram calculados com a calculadora PaDEL, e os resultados foram divididos em 
treinamento e teste após o pré-tratamento dos dados. O conjunto de treinamento foi utilizado 
para gerar um modelo empregando a aproximação da função genética na escolha dos 
melhores descritores para formar o modelo. Os parâmetros de validação do modelo incluem; 
R2train como 0.8067, LOF como 0.037, r2 (Qcv) como 0.6378, R2test como 0.7629 e ��2� 
como 0.6990 que passaram os critérios de aceitabilidade de um modelo QSAR em todo o 
mundo. Além disso, o modelo descreve quatro (4) descritores, AATS4v, AATS5i, AATSC5i e 
GATS5m, com efeitos médios positivos, significando que o aumento desses descritores 
influenciará positivamente e aumentará a atividade dos inibidores. Este estudo descreve uma 
rota na concepção e síntese de novos compostos de tetrandrina C14-ureia com melhores 
potenciais inibitórios 
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1. INTRODUCTION  

Human erythroleukemia (HEL) is a nasty syndrome formed as 
a result of some infrequent heterogeneous cells corresponding 
to about 3 to 4% of acute myeloid leukemia (AML) which give 
rise to red blood cells (Davey et al., 1995). Thus, the body 
produces a large amount of abnormal, immature white and red 
blood cells (erythrocytes). According to the World Health 
Organization (WHO), human erythroleukemia can be grouped 
into three subgroups. These include; (a) leukemia having multi-
lineage dysplasia; (b) therapy-based acute myeloid leukemia 
and myelodysplastic disorders and (c) acute erythroid leukemia 
subdivided in erythroleukemia (erythroid/myeloid) and pure 
erythroid leukemia (Kowal-Vern et al., 2000). HEL is well-
known to effects males, and the age for spreading of the disease 
seems to be bimodal, with a minimum of below 20 years and 
maximum in the seventh decade of life (Kowal-Vern et al., 
2000). Tetrandrine, on the other hand, is a 
dibenzyltetrahydroisoquinoline compound derived from 
Chinese medicinal plant called Stephania tetrandra and it is 
reported to have anti-tumor activities, proliferation 
chemotherapeutic drugs and converses multidrug resistance 
(MDR) of tumor cell (Liu., 2016).  

In recent decades, there was a significant number of studies that 
proved the success of the Quantitative Structure-Activity 
Relationship (QSAR) approach for prediction of various 
properties, such as solubility, lipophilicity, toxicity, 
mutagenicity, activities (Lan et al., 2017). By definition, a 
QSAR model is a mathematical linear equation involving 
molecular descriptors used in predicting the biological activity 
of a compound which is ought to be very useful in designing a 
new compound with better activity. Therefore, the main aim of 
this research was to develop a QSAR model of some C14-urea 
tetrandrine compounds which can be used to predict the 
biological activities of Human erythroleukemic (HEL) cells 
using Genetic Function Approximation (GFA) method. 

2. METHODOLOGY 

2.1 Data set collection 
 

A data set of twenty-eight (28) C14-urea tetrandrine 
compounds as potent anti-cancer agents for this study were 
sourced from the literature (Lan et al., 2017). The biological 
activities of the inhibitors against leukemia  (HEL) cell line 
were measured in IC50 (��) which is the concentration of 
compound required to reduce 50% of the cell viability. This is 
further transformed to a logarithm scale (Eq. 1) so as to reduce 
skewness in the concentration values. The 2D structures of the 
compounds were drawn using Chem Draw software version 
12.0.2, then aligned with their respective IC50 values as showed 
in Appendix table A1. 

)10log( 6
5050

−×−= ICpIC           (1) 
2.2 Geometry Optimization 
 

The molecular geometries of all the compounds were 
obtained by engaging Spartan V.14 at the density functional 
theory level (DFT/B3LYP/6-31G*) at ground state, (Becke,   

1993; Lee et al., 1988). The geometry optimization is the 
process of computing the lowest energy of conformation for a 
given compound which also corresponds to its most stable 
structure.  
 
2.3 Molecular descriptor calculation and Data pretreatment 
 

The optimized twenty-four (24) molecules were 
subjected to PaDEL calculator to compute their molecular 
descriptors including electronic, spatial, structural, 
constitutional, geometrical, physiochemical, autocorrelation, 
thermodynamic, and topological descriptor (Alisi et al., 2018). 
The data generated from the PADEL- software in MS Excel 
(.csv) format were observed to contain redundant data, zero or 
non-informative descriptors, as such the data were further 
subjected to the pre-treatment process using a data pre-treatment 
malware downloaded from Drug Theoretical and 
Cheminformatics (DTC lab) website so as curate the results 
(Ambure et al., 2015). 
 
2.4 Data Set Division 
 

The pre-treated data were split into two sets (training 
and test sets) by employing Kennard-Stone’s algorithm division 
technique using a division software also gotten from DTC Lab 
and (Kennard and Stone, 1969). 
 
2.5 Model Generation and Validation 

 
The training set was exported to material studio 

software for model building using genetic function 
approximation (GFA) approach, where the dependent variable 
is the inhibitory concentration (IC50) and the independent 
variables are the molecular descriptors. The fitness score of the 
resultant GFA model during the evolution process was 
measured using Friedman formula (Eq. 2) which determines the 
finest fitness score defined as; (Friedman, 1991).  In Materials 
Studio, LOF expression (Eq. 2) is slightly different from the 
original Friedman expression (1991).  

 
�� = ���
������ �� �× �� ���    (2) 

 
where c represents the number of the terms in the model, d 
represents a scaled smoothing factor, p corresponds to the entire 
number of descriptors in the model, M represents the number of 
inhibitors or compounds that made up training set and � is a 
safety factor with a value of 0.99 which guarantee that the 
denominator of the equation can never be equal to zero (Khaled 
and Abdel-shafi, 2011). SSE is the Sum of Squares of Errors 
and it is defined by the expression (Eq. 3) below; 
 

  ! =  "#$%&�  � $�'%�(�
) �* �  �        (3) 

 
 
SSE value gives an idea about the quality of a model, low SEE 
value signifies better model and vice versa.  
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2.6 Internal Validation 
 

The validity of the QSAR model examined using 
leave-one-out (LOO) cross-validation which provides a 
rigorous internal check on the model. It is also used to check the 
true predictive power or reliability of the model. The cross-
validation regression coefficient, r2

 (Q2
cv) were also calculated 

using Eq. 4: 

r2
 (Q2

cv)  =   1 −  -∑�/  0 1�'%���

∑�/ 0 12'�� 3 = 1 − *4���
��5  (4) 

 
Where 678  is the average observed activities for the training set, 6 is the observed activity, and 6pred is the predicted activity of 
the training set respectively (Brandon, 2015). PRESS is the 
predictive sum of squares of a model, SST is the total sum of 
squares which correspond to the mean-corrected sum of squares 
of the responses over the entire data set.  
The cross-validation coefficient r2(Q2

cv) is one of the key 
parameters that assess the predictive sway of a model. However, 
r2

 (Q2
cv) score closer to 1.0 depicts high predictive influence. 

Furthermore, r2 (Q2
cv) score ought to be nearly close to the 

regression coefficient (R2). But r2 (Q2
cv) that is far less than R2 

probably suggest data overfitting by the model. The r2
 (Q2

cv) 
score of 0.0 by a model means no predictive consistency at all, 
according to the cross-validation criterion. 
The values of regression coefficient (R2) are directly 
proportional to the number of descriptors. However, the R2 
values are not consistent for evaluating the strength of the 
model. Thus, R2 is adjusted with the mandate to refurbish and 
stabilize the model equation. The R2 (adjusted) is given as in Eq. 
5: 

R2
adj =  

4� �9 :; ��)
; �9 <� = 1 − ���/:;�9)

��5/:;��)    (5) 

 
Where p is the number of descriptors or parameters in the 
regression model and n is the number of compounds that made 
up the training set (Brandon, 2015). The adjusted r2 is significant 
only when there are some degrees of freedom for lack-of-fit. For 
a model with an additional parameter to be an improvement, the 
addition of the parameter is required to decrease SSE at least 
proportionately to the reduction in the degrees of freedom. 
 
2.7 External Validation 
 
The model developed was further subjected to external 
validation in order to measure its prediction competency using 
the test set and the regression coefficient:�98>?@ ) value is given 
in Equation 6;  
 

�98>?@ = 1 −  ∑#$98>?2%A2 � $%&�2%A2(�
∑#$98>?2%A2 � $2'BCDCDE (�   (6) 

 
Where;  F98>?2%A2  and FGH�7>I7are the observed and predicted 

activity of the test set respectively.  F78JK;K;L is mean scores of 
observed activity of the training set (Tropsha et al., 2003). 
 
2.8 MLR Y-Randomization  
 

In order to have confidence in the model built, Y-
Randomization test was executed on the training set descriptors 
matrix (Tropsha, 2010). This is done by randomly shuffling the 
inhibitory concentrations (dependent variable) while keeping 

the descriptors (independent variables) constant resulting in the 
generation of random MLR models (Roy et al., 2012). The new 
QSAR models are anticipated to have significantly low R2 and 
Q2 values for 10 trials, which certify that the models are robust 
and c�9@  is also calculated which should be more than 0.5, 
defined as in Eq. 7: 

c�9@ = � × M�@  −  :�8)@N�/@   (7) 
 where c�9@  is the coefficient of determination, R is the 
coefficient of regression and Rr is average ‘R’ of random 
models. 
 
2.9 Bias-variance estimation 
 
The model generated was also assessed by examining the 
residuals (prediction errors) according to bias-variance 
evaluation. This method allows QSAR users to understand the 
contribution of the two components of the prediction errors, 
namely systematic error (bias) and random error (variance) in 
the model (Roy, 2017). The estimation was successfully 
achieved using a Bias-Variance Estimator downloaded from 
DTC lab website, and it uses bootstrapping procedure as a 
resampling process. The output parameters are bias2 and 
variance defined as in the equations below; 

OPQR2 = 1
T� ∑ :FUVWGX:P) − FYZR)2T�P=1                              (8) 

6U�WGX:P) = ∑ 6�WGX:P)O:[)TO[−1
TO                                                   (9) 

\QWPQ]�G = �
)� ∑ �

)^
)�K_� ∑ �F*8>?:K)

`a − FU98>?:K)` �@)^b_�       (10) 

Where Nc represents the number of compounds in the test set, 
Yexp(i) is the experimental response value of the compound ‘i’,   FUVWGX:P) is the mean predicted response value of compound ‘i’ 

from ‘i’ bootstrap models,  F*8>?:K)
`a  is the predicted response 

value of compound i from the bootstrap model ‘j’ 
 
2.10 Statistical analysis of the descriptors  
 
2.10.1 Mean Effect 
 

The mean effect score of a descriptor is used to 
estimate its relative significance and contribution in the model 
and it is defined as: 

�GQ] !ccG�d = ea  ∑ ?aDC∑ #ea  ∑ ?aDC (fa        (11) 

where αj represents the coefficient of the descriptor j, dj 
correspond to the value of each descriptor in the data matrix for 
each molecule in the training set, m represents the number of 
the descriptors in the model and n is the number of molecules in 
the training set (Minovski et al., 2013). 
 
2.10.2 Varian Inflation Factor (VIF) 
 

The variance inflation factor is a measure of the 
multicollinearity among the descriptors, usually expressed as: 
 \g� = :1 − �@)��     (12) 
 
where R2 is the correlation coefficient. The VIF values ranging 
from 1 to 5 depicts that the model is stable and acceptable. 
Hence, VIF value corresponding to unity means that there is no 
inter-correlation between the variables.   But, VIF value greater 
than 10 suggests that the model is unstable and unacceptable 
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(Myers, 1990) 
2.11 Applicability Domain 
A QSAR model applicability domain is usually tasked to 
explore the area where the compound predictions can be 
dependably useful. As such, chemical compounds that fall 
outside the applicability domain cannot make a very good 
prediction (Eriksson et al., 2003; Nandi et al., 2013). 
Consequently, the prediction that is interpolated in the chemical 
space is acceptable while extrapolated predictions in the 
chemical space are rejected as well.  The leverage technique was 
engaged in evaluating the domain of applicability for the model 
generated and it is defined as the leverage values for the ith 

compound (Eq. 13) (Gramatica et al., 2007) 

  
T

i
T

i XXXXhi 1)( −=      (13) 
where X(i) is a vector of molecular descriptors of the compound, 
X is a matrix of descriptors for compounds from the training set, 
and XT is the transpose matrix of X used in developing the 
model. The threshold leverage (h*) is defined as borderline of 
normal leverage scores for X outliers (Eq. 14):  h*= 3 :8<�)

;      (14) 

Where n is the number of training compounds and r is the 
number of descriptors in the model.

3. RESULTS AND DISCUSSION 

3.1 Descriptor Calculations 

The QSAR study was performed to generate a model 
that relates data from the structure of C14-urea tetrandrine 
compounds with its inhibitory activity against Human 
erythroleukemia (HEL) cell lines. Initially, the 32 quantum 
chemical descriptors for all the drawn compounds were obtained 
from Spartan 14 software via the optimization process. These 
were pooled with the 1875 molecular descriptor calculated by 
PaDEL-Descriptor calculator V2.20 to give 1907.  

3.2 Data Pretreatment and Division 

The PaDEL-Descriptor output in MS Excel (.csv) were 
subjected to data pretreatment which removed non-informative 
constant data and pair of variables with a correlation coefficient 
greater than 0.7 using the Data pre-treatment software. The data 
set results from the pretreatment process was divided by using 
Kennard-Stone algorithm method, where 19 compounds are 
considered as training set and 9 compounds are the test set. The 
division was successfully done using the Dataset Division GUI 
1.2 software. 

3.3 Model Building and Validation 

In building the QSAR model, four (4) optimum descriptors were 
selected via Genetic Function Approximation (GFA) of material 
studio software and the model generated is illustrated below: 
  
pIC50= 0.056049326 *AATS4v + 0.125292658 * AATS5i + 
4.178045312 * AATSC5i  + 2.792929285 * GATS5m -28.6592 
(15) 

The validation parameters of the model were presented in Table 
1, which clearly shows that the model passed the criteria of 
acceptability. Also, the coefficients of regression (R-squares) 
are 0.8053 and 0.7629 for both the training and test set inhibitors 
respectively. This is an indication of a good relationship 
between the predicted and observed activities.  

Table 1 – Internal validation parameters  
Model Validation  

Parameter Value Threshold Ref. 
LOF(Friedman) 0.0367 -  
R2 (training) 0.8067 ≥ 0.6 (Tropsha, 2010) 
R2 (Adjusted) 0.7515 -  
QCV(r2) 0.6398 ≥ 0.5 (Tropsha, 2010) 
S. Regression Yes -  
Critical F-value 3.1601 -  
Lack of fit 14 -  
R2 (test) 0.7629 ≥ 0.6 (Tropsha, 2010) 
No. of Bootstrap 
Models 

10,000 
 

- 
  

Bias^2 0.0186 -  
Variance 0.00483 -  
R2 

Pred 0.6209 ≥ 0.6 (Tropsha 2003) 
 

The values for model external validation of the test set inhibitors 
was reported in Table 2, and the R2 

Pred was computed as 0.6209. 
The entire model descriptors scores of the dataset, model 
prediction results which encompasses observed, predicted 
inhibitory concentration (pIC50) and their residual scores were 
presented in Table 3 and 4 respectively. 

   Table 2 – External validation of the test set compounds 

ID No. Ypred Yexp (Ypred-Yexp) (Ypred-Yexp)2 (Ypred-Y tr) (Ypred-Y tr)2 
22 4.9068 4.9362 -0.0294 0.000869 -0.27606 0.076211 
20 5.4456 5.4788 -0.0332 0.001105 0.262744 0.069034 
14 5.1639 5.1890 -0.0251 0.000634 -0.01897 0.00036 
17 4.9460 5.0958 -0.1498 0.022445 -0.23687 0.05611 
2 5.1296 5.3439 -0.2142 0.045885 -0.05319 0.002829 
1 5.0808 5.3196 -0.2387 0.057016 -0.102 0.010404 

4 4.9161 5.0259 -0.1098 0.012056 -0.26673 0.071145 

24 5.3523 5.3306 0.0217 0.000471 0.169502 0.028731 

27 5.4456 5.3746 0.0709 0.005036 0.262773 0.069049 

    ∑ = 0.1455  ∑ =0.3838 

 

Hence,  R2 
Pred = 1 − j.�lmm

j.nono = 0.6209 

  

JC
EC



 JCEC - ISSN 2527-1075. 

 

Table 3 - Descriptors and their scores 
Name 

 
AATS4v 

 
AATS5i 

 
AATSC5i 

 
GATS5m 
 

1 a 191.2172 158.9763 0.113391 0.941708 

2 a 188.7672 159.5503 0.141485 0.940577 

3 179.6935 159.7312 0.181305 1.019785 

4 a 189.4507 158.6309 0.126677 0.913801 

5 190.2577 159.6393 0.166333 0.923922 

6 195.5674 158.9422 0.130958 0.800991 

7 189.6495 158.8044 0.106531 0.95271 

8 191.3768 159.1293 0.102356 0.932943 

9 194.9906 159.0844 0.097067 0.945155 

10 194.7097 159.0556 0.100522 0.930606 

11 197.6377 160.5527 0.080365 0.921723 

12 195.1452 159.0005 0.134983 0.917208 

13 193.6035 160.2301 0.112096 0.935366 

14 a 196.5985 158.7824 0.110915 0.875849 

15 195.3012 159.1388 0.119859 0.940639 

16 197.698 160.1874 0.152365 0.784384 

17 a 191.4124 158.9583 0.090172 0.925043 

18 190.1657 159.3008 0.102022 0.949016 

19 197.5386 158.5713 0.071864 0.958166 

20 a 206.3831 157.2727 0.074365 0.902759 

21 182.7771 159.9879 0.1438 0.945972 

22 a 186.465 159.221 0.114748 0.96175 

23 195.8065 159.7764 0.140898 0.848063 

24 a 190.3263 159.7573 0.179237 0.923259 

25 196.6429 158.3903 0.144702 0.855029 

26 191.9665 158.7985 0.16282 0.944654 

27 a 191.3396 158.2101 0.13436 1.072861 

28 193.8159 158.2857 0.13424 0.952818 
a superscript signify test set 
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Table 4 - QSAR predictions results 
Training Set    Test Set    

ID No. Activity  Predict Residuals ID No. Activity  Predict Residual 

3 4.9248 5.0313 -0.1065 1 5.3196 5.0808 0.2387 

5 5.3957 5.2816 0.11408 2 5.3439 5.1296 0.2142 

6 5.0296 5.0008 0.02884 4 5.0259 4.9161 0.1097 

7 4.9093 4.9735 -0.0641 14 5.1890 5.1639 0.0251 

8 5.0925 5.0384 0.0541 17 5.0958 4.9460 0.1498 

9 5.3133 5.2473 0.0660 20 5.4788 5.4456 0.0332 

10 5.1771 5.2017 -0.0246 22 4.9362 4.9068 0.0294 

11 5.3957 5.4444 -0.0486 24 5.3306 5.3523 -0.0217 

12 5.3506 5.3258 0.0248 27 5.3746 5.4456 -0.070 

13 5.3242 5.3485 -0.0243 
-    

15 5.1844 5.3541 -0.1697 
-    

16 5.2668 5.3192 -0.0525 
-    

18 5.0491 5.0355 0.0136 
-    

19 5.2831 5.2569 0.0262 
-    

21 4.8291 4.8735 -0.0443 
-    

23 5.2588 5.2917 -0.0328 
-    

25 5.0366 5.200288 -0.1636 
    

26 5.4341 5.315348 0.118804 
    

28 5.2189 5.258146 -0.03918 
    

By definition, Residual score is the differences between 
observed and predicted activity, and lower residual values 
signify high extrapolative ability of the model. In addition, the 
model generated was assessed by developing 10,000 bootstrap 
models of the same sample size starting from the training set, in 
order to estimate the magnitude of systematic (bias) and random 
(variance) errors (Roy, 2017).  The bias, variance and mean 
square errors were very insignificant, which depicts that the 
model predictions are good. 

3.4 Statistical Analysis of the Descriptors 

In order to assess the relationships among descriptors in 
the model, values of the four (4) descriptors were extracted from 
the training set, then subjected to Pearson’s correlation analysis 
and the results were described in Table 5. The result shows that 
there is an insignificant inter-correlation among the descriptors 
because the correlation coefficients between all pairs are less 
than 0.6.  

Table 5 - Pearson’s correlation analysis 
Descriptors  AATS4v AATS5i AATSC5i GATS5m 

AATS4v 1    

AATS5i -0.17113 1   

AATSC5i -0.46341 0.08196 1  

GATS5m -0.58045 -0.11521 -0.13927 1 

 

The results in Table 6 illustrates some statistical parameters of 
descriptors in the developed model. It shows that the variance 
inflation factor (VIF) scores of all descriptors in the model are 
not greater than 4, which is acceptable. Similarly, the p-values 
of all descriptors in the model are less than 0.05, which means 
that there is a relationship between the descriptors and the 
inhibitory concentration of the compounds. The output of F-
Randomization test was presented in Table 7. The ��2� value 
was calculated as 0.6990 which is greater than 0.5. 
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Table 6 - Statistical parameters  

Descriptors 
 
  

Coefficients 
 
 

VIF 
 
 

P-value 
 

 

Mean 
Effect 

AATS4v 0.0573 3.1278 3.1E-06 0.3291 

AATS5i 0.1213 1.1495 0.0038 0.5754 

AATSC5i 4.1771 1.9406 0.0008 0.0156 

GATS5m 2.9181 2.4751 0.0001 0.0798 

 
Table 7- Y-randomization test 

Model R R^2 Q^2 

Original 0.8981 0.8067 0.6398 

Random 1 0.4163 0.1733 -0.6024 

Random 2 0.3546 0.1257 -0.5840 

Random 3 0.3187 0.1015 -0.5506 

Random 4 0.4918 0.2419 -0.2730 

Random 5 0.4504 0.2028 -0.4480 

Random 6 0.5457 0.2978 -0.2576 

Random 7 0.5147 0.2649 -0.3244 

Random 8 0.1304 0.0170 -0.8243 

Random 9 0.6325 0.4001 -0.1143 

Random 10 0.6271 0.3932 -0.1854 

Average r : 0.4482   

Average r^2  : 0.2218   

Average Q^2 : -0.416   

cRp^2 : 0.6990   

 

A Plot of standardized residual versus observed inhibitory 
concentration “Fig 1” showed a random scattering around the 
baseline of data at the standardized residual equal to zero which 
depicts the absence of systematic error. 

  
Figure 1  – Plot of Standardized residual against Observed 
(pIC 50). 

A scatter plot for standardized residuals against the leverages 
also termed as Williams Plot was presented in “Fig 2” so as to 
detect the structural outliers or influential compounds. The plot 
revealed dispersion of inhibitors within ± 2 square area of 
standard deviation unit which means there is no Y-outlier. 
However, the calculated threshold leverage (h*) is 0.78, which 
revealed that three (3) test set compounds (i.e., compound 4, 20 
and 27) are considered as structural X-outliers because their 
leverages are more than the threshold score. The reason is that 
of the differences in the substitution pattern of the chemical 
structure in the dataset. 

 

Figure 2 - Williams plot (Standardized residuals vs 
Leverages) 

Plot of predicted versus observed activity (pIC50) was presented 
in “Fig 3” which clearly shows the that the training set inhibitors 
are in agreement with the test set inhibitors. 

3.5. Meaning of the descriptors  

The four (4) descriptors in the model belong to the 
autocorrelation descriptor java class, and their descriptions were 
reported in Table 8. 

Average Broto-Moreau autocorrelation descriptors (ATSk) are 
generally computed as the graph invariant describing how the 
property considered is distributed along the topological 
structure. It is obtained by dividing each term by the 
corresponding number of contributions, thus avoiding any 
dependence on molecular size as in equation 16: 
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Where ∆u  is the sum of the Kronecker delta function which 
corresponds to the total number of vertex pairs at distance equal 
to k (Todeschini and Consonni, 2009). AATS5i and AATS4v 
descriptors has the highest contribution with the mean effect of 
0.5754 and 0.3279 respectively. 
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Figure 3 – Plot of predicted against observed activities (pIC50).

Table 8- Descriptor class and descriptions 

Descriptor 
 
 

Description 
 
 

Class 
 
 

AATS4v 
 
 
 

Average Broto-Moreau 
autocorrelation/ measured 
by van der Waals volumes 
(lag 4) 
 

2D 
 
 
 

AATS5i 
 
 
 

Average Broto-Moreau 
autocorrelation - lag 5 / 
weighted by first ionization 
potential 

2D 
 
 
 

AATSC5i 
 
 
 

Average centered Broto-
Moreau autocorrelation - lag 
5 / weighted by first 
ionization potential 

2D 
 
 
 

GATS5m 
 

Geary autocorrelation - lag 
5 / weighted by mass 

2D 
 

 

The Geary autocorrelation - interval 8 per weighted by the 
Vander Waals volumes (vwxyz{) is also a 2D autocorrelation 
descriptor, obtained from molecular graphs by summing the 
products of atom weights of the terminal atoms of all the paths 
of the considered path length (lag 5) (Todeschini and Consonni, 
2009). The positive mean effect of these four (4) descriptors in 
this study inferred that an increase in their values will positively 
influenced and increases the inhibitory concentrations. 

CONCLUSION  

In conclusion, this research has successfully achieved its 
aim of generating a statistically significant model for predicting 
the inhibitory potentials of C14-urea tetrandrine compounds 
against Human erythroleukemia (HEL) cell line using Genetic 
Function Approximation (GFA) method. Our research findings 
revealed molecular descriptors AATS4v, AATS5i, AATSC5i, 
and GATS5m with positive mean effects depicts that an increase 
in the descriptors score, increases the activity of the inhibitors.  
Hence, this knowledge could be of vital importance in designing 
and synthesizing new C14-urea tetrandrine compound with 
excellent inhibitory potentials. 
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APENDIX A1  

 
Table A1 - C14-urea tetrandrine compounds and their Inhibitory Concentrations (IC50) in |} against 
HEL Leukemic cell line. 
 

ID No. Training set compound IC50 :��) pIC50 

3 

 

1.19 
 
 
 
 
 
 
 
 
 
 

 

5.9244 
 
 
 
 
 
 
 
 
 
 
 

5 

 

4.02 
 
 
 
 
 
 
 
 
 
 

 

5.3957 
 

 
 
 
 
 
 
 
 
 
 

6 

 

9.34 
 
 
 
 
 
 
 
 
 

 

5.0296 
 
 
 
 
 
 
 
 
 
 

7 

 

11.23 
 
 
 

 
 
 
 
 
 
 
 
 
 

4.9492 
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8 

 

8.08 
 
 
 
 
 
 
 
 
 
 

 

5.092 
 
 
 
 
 
 
 
 
 
 
 

9 

 

4.86 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3133 
 
 
 
 
 
 
 
 
 
 
 
 

 
10 

 

6.65 
 
 
 
 
 
 
 
 
 
 
 

5.1771 
 
 
 
 
 
 
 
 
 
 

 
11 

 

4.02 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3957 
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12 

 

4.46 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3506 
 
 
 
 
 
 
 
 
 
 
 
 
 

13 

 

4.74 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3242 
 
 
 
 
 
 
 
 
 
 
 
 
 

15 

 

6.54 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1844 
 
 
 
 
 
 
 
 
 
 
 
 
 

16 

 

5.41 
 
 
 
 
 
 
 
 
 
 
 
 

5.2668 
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18 

 

8.93 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.0491 
 
 
 
 
 
 
 
 
 
 
 
 
 

19 

 

5.18 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2856 
 
 
 
 
 
 
 
 
 
 
 
 
 

21 

 

11.48 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.8297 
 
 
 
 
 
 
 
 
 
 
 
 
 

23 

 

5.51 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2586 
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25 9.19 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.0366 
 
 
 
 
 
 
 
 
 
 
 
 
 

26 3.68 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.4341 
 
 
 
 
 
 
 
 
 
 
 
 

 
28 6.04 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2189 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ID No. Test  set Compound IC50 :��) pIC50 

1 

 

4.79 
 
 
 
 
 
 
 
 
 
 

5.3196 
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2 

 

4.53 
 
 
 
 
 
 
 
 
 
 
 

5.3439 
 
 
 
 
 
 
 
 
 
 
 

4 

 

9.42 
 
 
 
 
 
 
 
 
 
 
 

5.0259 
 
 
 
 
 
 
 
 
 
 
 

14 

 

6.47 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1890 
 
 
 
 
 
 
 
 
 
 
 
 
 

17 

 

8.02 
 
 
 
 
 
 
 
 
 
 
 
 

5.0958 
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20 

 

3.32 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.4788 
 
 
 
 
 
 
 
 
 
 
 
 
 

22 

O

O

N

O

O

N

HN

O

N

H

O

O

11.16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.9523 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24 

 

4.67 
 
 
 
 
 
 
 
 
 
 
 
 

5.3306 
 
 
 
 
 
 
 
 
 
 
 
 

27 

4.22 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

5.3746 
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