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 The study of the quantitative structure-activity relationship (QSAR) was used in a set of data 
from 43 heterocyclic and phenylic inhibitor compounds in order to establish a correlation 
between the inhibitory concentrations of the compounds in question and their structures. The 
optimization method of the density  functional theory (DFT) was used to minimize the energy 
of the 3D structures using the Becke functional  hybrid Exchange (B3)  parameter with the 
Lee, Yang, and Parr Functional Correlation (LYP), commonly called the B3LYP functional 
Hybrid and 6-31G* Basis Set (B3LYP/6-31G*) method, to discover their molecular 
Quantum descriptors. Five models of QSAR were generated with the technique of genetic 
function algorithm (GFA). Among the five models generated, model 1 was selected as the 
best model because of its statistical significance (Friedman's LOF = 0.3008, R2 = 0.9784, 
R2

adj = 0.9739, Qcv
2 = 0.9675 and R2pred = 0.7348). The meticulous model was evaluated by 

means of the Leave One out cross-validation (LOO-CV) approach, external validation of the 
compounds of the test set, Y -randomization test and applicability domain (Williams Plot). 
The proposed QSAR model was highly predictive and vigorous with good validation 
parameters. The molecular descriptors used in the model should be considered of great 
importance in improving the inhibitory concentrations of the herbicides and also in the 
conception of new herbicides with a higher concentration of inhibitor. 
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  R E S U M O  
 

 
O estudo da relação quantitativa estrutura-atividade (QSAR) foi utilizado em um conjunto 
de dados de 43 compostos de inibidores heterocíclicos e fenílicos, a fim de estabelecer uma 
correlação entre as concentrações inibitórias dos compostos em questão e seus Estruturas. 
O método de otimização da teoria funcional da densidade (DFT) foi utilizado para 
minimizar a energia das estruturas 3D utilizando o parâmetro híbrido funcional de Becke 
(B3) com a correlação funcional de Lee, Yang e Parr (LYP), comumente denominada 
B3LYP funcional híbrido e 6-31G * base Set (B3LYP/6-31G *) método, para descobrir seus 
descritores Quantum molecular. Cinco modelos de QSAR foram gerados com a técnica de 
algoritmo de função genética (GFA). Entre os cinco modelos gerados, o modelo 1 foi 
selecionado como o melhor modelo por causa de sua significância estatística (LOF de 
Friedman = 0,3008, R2 = 0,9784, R2adj = 0,9739, Qcv

2 = 0,9675 e R2pred = 0,7348). O modelo 
meticuloso foi avaliado por meio da abordagem Leave One out Cross-Validation (LOO-CV), 
validação externa dos compostos do conjunto de teste, teste de randomização Y e domínio de 
aplicabilidade (Williams Plot). O modelo QSAR proposto foi altamente preditivo e vigoroso 
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com bons parâmetros de validação. Os descritores moleculares utilizados no modelo devem 
ser considerados de grande importância na melhoria das concentrações inibitórias dos 
herbicidas e também na concepção de novos herbicidas com maior concentração de 
inibidores. 
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1. INTRODUCTION  

      Herbicides are chemical compounds that inhibit different 
metabolic processes in plants. They are extensively used in 
agricultural purposes as an agent of destruction against 
undesirable crops (weeds). Weeds usually struggle with other 
species of crops for nutrients, sunlight, and water. In addition, 
weeds are capable of  influencing plant growth, causes a 
decline in crop production and quality (Prasad et al., 2011). 
However, weeds are usually the causative agent of most 
pathogens, pests, and viruses, which can contribute extremely 
to the blowout of diseases in plant and insect pests. The 
herbicides being the safest and the most effective way to 
control weed can play a vital role in mechanized farming. The 
fortification of crops continually needs the discovery of new 
innovative herbicides. However, mechanized and large-scale 
farming is attainable with the help of herbicides. The 
herbicides play a reliable role in the unified management of 
weeds (Funar et al., 2017).  
 
      A large species of herbicide was developed early from the 
structure to the genre of actions (Troyer et al., 2001). The first 
commercial herbicide that was discovered at the beginning of 
1948 was 2.4-dichlorophenoxyacetic acid (2.4-D) by 
Zimmerman (Zimmerman et al., 1948). In addition, the 
tendency in its structure and chemical activity was used in the 
designation of new inhibitors (Liu et al., 2013). The herbicides 
perform their function by influencing the electron transport 
system of the plants during the process of photosynthesis 
(Dayan et al., 2012). The slowdown of the electron flow to 
participate in the binding of the plastoquinone and the 
eccentricity of the electron in the photosystem I (PSI) was of 
great significance in photosynthesis. The relocation of electron 
from the PSI to its QB binding site of the D1 subunit of 
photosystem II (PSII) is succeeded with the help of the 
plastoquinone. A lot of classes of herbicides (e.g. urea, triazine 
pyridines etc.) can be destined to the undiscerning PSII QB 
binding site. PSII plays a vital role in photosynthesis and also 
in plant growth (Zhang et al. 2014). QB is a complex proteins 
sheath, which captures light from the sun and finishes the light 
oxidation of water to atmospheric oxygen. A sequence of light-
inspired electron transfer reactions proceeds in the D1 and D2 
subunit of PSII. The QB binding site of D1 protein is the 
finishing point of the electron transfer process in the PSII and 
is also the livelihood target of most herbicides. Herbicides 
always displaces the plastoquinone from its QB binding 
position (Pfister et al., 1979). 
 
      The quantitative structure-activity relationship (QSAR) is a 
technique used in the establishment of mathematical or 
computational models that strive to establish a good correlation 
between molecular structures (descriptors) and properties 
(concentrations) using a Chemometric method (Cruz et al., 
2014). However, in the contex of the molecular design, the 
word “structure” refers to molecular descriptor of the 
compounds (Verma et al., 2010). While, the Chemometric 
method employs artificial neural networks (ANN), principal 
component regression (PCR), Principal Component Analysis 
(PCA), multiple linear regression (MLR), partial least squares 
(PLS), genetic function algorithm (GFA) etc. However, several 
approaches to the QSAR studies have been established over a 
period of about a hundred years ago and have been abetted as a 
good predictive measure, particularly in the design of new 

narcotics drugs and in the synthesis of new agrochemicals. 
These QSAR methods were established by Hansch and free-
Wilson (Takač et al., 1991) starting from 1D, 2D linear free-
energy correlation, 3D QSAR of Crammer, 4D. Hopfinger, 5D 
Vedani and 6D (Hansch et al., 1963). The 1D, 2D and other 
similar methods were generally referred to as  "Classic 
Methods ". The classical method was succeeded with the 
approximation of the genetic function algorithm (GFA) 
(Rasulev et al., 2005). The GFA technique does not only select 
the integer number of descriptors in the regression study but, 
also introduces multiple linear regression (MLR) on the use of 
straight-line, higher order polynomials, splines and Gaussian 
(Cho et al., 2001, 18). The algorithm technique was used to 
select the best descriptors in the regression equation. The 
genetic function algorithm could help as a valuable procedure 
for probing the large probability space with a large number of 
descriptors for a small number of molecules. The essence of 
this research was to develop a predictive QSAR  model using 
30 compounds as training set. However, if the developed 
QSAR models were reasonable enough, it may be use to 
predict the inhibition concentration of the unknown 
compounds. In addition, the prosperous QSAR models will 
certainly decrease the number of compounds to be synthesized 
more especially in pharmaceutical laboratories, thereby, 
making it an easy and affordable  technique to reduce cost and 
time duration with regards to developing  new drugs and 
agrochemicals. 
 

2. MATERIALS AND METHOD 

2.1 Experimental Dataset 
 
      43 compounds were used in this study as data set, 
comprising a mixture of Sulfonyl Urea, Triazines, Benzoate, 
Acetamides, Pyridines, etc. The inhibition concentration of 
these compounds has been reported in the literature (Gand et 
al., 2015). The dataset, along with its chemical abstract service 
record number (CASRN), IUPAC names, common names, and 
various physicochemical properties has been selected from a 
simplified molecular input line String file system Commonly 
abbreviated as SMILES. The result of the inhibitory 
concentration was expressed in pLC50 (pLC50 = - log(LC50) 
which is the concentration at  50%  maximum inhibition. 
 

2.2 Geometry Optimization 
 
      The procedure of calculating the equilibrium geometry or 
lowest energy conformation of a molecule is called molecular 
optimization (Abdulfatai et al., 2015). The 2D structures of the 
compounds were drawn with the help of ChemDraw Ultra 
version 12.0 software and the drawn compounds were saved in 
a format called CDX file format (Ibrahim et al., 2018). The 3D 
conformations of the compounds were optimize using a 
programmed software package called Spartan 14.0 VI. 1.4 
wave function (Arthur et al., 2016). The molecular structures 
were in the first place pre-optimized using the Semiempirical 
method purposely to reduce the tension in the molecule before 
submitting the whole molecules to DFT (density functional 
theory) exploring the Becke three parameters exchange 
functional (B3) hybrid with Lee, Yang and Parr Functional 
Correlation (LYP), usually abbreviated as B3LYP (Lee et al., 
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1988) and by the use of 6-31G* basis set for complete 
optimization of the 3D structures. The optimized spartan files 
of all the molecules were then saved in a format called the sdf 
file format, which is the only input entry format that can be 
recognized by the Padel-Descriptor V 2.20 software (Adeniji et 
al. 2018). 
 
2.3 Molecular Descriptor Calculations 
 
      Molecular descriptor is a mathematical value or figure that 
describe properties of molecules acquired from an accurate 
algorithm or experimental procedure (Olasupo et al., 2017). 
Quantum chemical descriptors were calculated using the 
optimization software of Quantum chemistry known as Spartan 
' 14 version 1.1.2 (Abdulfatai et al., 2017). The descriptors of 
the various dimensions (1D, 2D, and 3D) were calculated with 
the help of Padel software version 2.18. The total molecular 
descriptors of 1875 (1444 1D, 2D, and 431 3D) were generated 
from the Padel descriptor software and the Spartan  "14 " 
Software (Arthur et al., 2016). 
 
2.4 Data Normalization 
 
      The descriptors obtained from the Padel software were 
unvarying by a procedure that makes use of range; Maximum 
and minimum with the dispersion of the molecular descriptors 
using standard deviation or variance. Thus, the sprincling of 
the descriptors was achieved before the data were transformed 
over into an N distribution (0, 1, 2... N). This procedure  
enables the correlation between descriptors much less 
redundant (Panchal et al., 2013). 
 
2.5 Data Pretreatment 
 
      The descriptors generated from the PaDEL software were 
pre-treated using software popularly known by the pharmacist 
as DTC LAB, meaning; Drug Theoretical Cheminformatics 
Laboratory. However, since a large number of descriptors have 
been generated, it is therefore important to employ an 
applicable technique to eliminate the less important 
descriptors. Molecular descriptors showing almost equal values 
were detached from all ensembles and the molecular 
descriptors having a very low variance were also ignored in 
order to decrease the Loch descriptor. The descriptors showing 
a small level of intercorrelation were retained (Roy et al., 
2015). 
 
2.6 Generation of Training and Test Set 
 
      In the development of a validated QSAR model, the data 
set of 43 compounds were divided according to Kennard and 
Stones into 70% of training and 30% of test set using 
information division software obtained from the Drug 
Theoretical Cheminformatics Laboratory (DTC LAB.) 
(Kennard and Stone 1969). The Kennard and Stone algorithm 
existed with a prodigious success in the recent QSAR studies 
and remained a valuable tool to build the both training and test 
sets compounds. 70% of the entire data set were used in the 
development of the QSAR model. The remaining 30% of the 
data set were used to validate the developed QSAR model 
externally. 
 

 
 
2.7 Relative Importance of Each Descriptor to the Model 
 
      The definitive meaning of the mean effect (ME) of each 
descriptor was used as a good measure to evaluate the absolute 
prominence and impact of each descriptor to the model. The 
mean effect can be calculated using Equation 1, given below 
as: 
 

�� = �� ∑ ���	∑ 
�� ∑ ���	 ��
                                                                     (�) 
 
Where, ME is the mean effect of descriptor J in the developed 
QSAR model, while βj, is the coefficient of descriptor J, Dj is 
the value of each descriptor in the data set for each molecule in 
the training compounds, m is the number of descriptors that 
appear in the model and n is the number of  training set 
compounds (Minovski et al., 2013) 
 
2.8 Degree of Contribution of Selected Descriptors 
 
     The significant impact of each designated descriptor is to 
take into account the standardized regression coefficients (���) 
as the factor that must be condidered in measuring the degree 
of impact of each descriptor to the model. The standardized 
regression coefficients ��� can be calculated using Equation 2 
,given by the  expression below: 
       

��� = ������                                                                                          (�) 

 
Where ��  is the regression coefficient of descriptor j. ��  and  ��  are the standard deviations of each descriptor and 
concentration respectively. Emphasis was placed on certain 
descriptors that reveal a larger standardized coefficient value. 
 
2.9 Model development 
 
      The multiple linear regression (MLR) study was 
performed with the aid of the genetic function algorithm 
(GFA) that was incorporated in the material studio software 
purposely to discover the ideal number of the descriptor in the 
model. Genetic function algorithm is a computer-aided 
descriptor calculation method that has been stirred from 
engineering and computer scientist (Saidi et al., 2016). GFA 
not only inevitably selects the prime number of descriptors in 
the regression analysis but, also creates a multiple linear 
regression models (MLR) by the use of linear, higher order 
polynomials, splines and Gaussians (Cho et al., 2001). The 
MLR showed an orthodox correlation between the 
concentrations (pLC50) and the molecular descriptors. The 
universal expression for MLR is given by equation 3, below: 
 � = �� + ����  +  ����  +  ���� + ⋯ ����                        (�) 
 
Where, Y is the dependent variable (inhibition concentration), 
X1, X2, …, Xn are the independent variables (descriptors) 
existing in the model with their equivalent regression 
coefficients of ��,  ��,…,  �� ,  respectively, and ��   is the 
constant term of the model. The explanation of the impact of 
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the individual descriptors X1, X2, …, Xn depends on the 
corresponding coefficient value of each descriptor in the 
regression equation and its numerical sign (Roy et al., 2015). 
However, each regression coefficient should be significant at 
95% probability level (P < 0.05), otherwise called 95% 
confidence limit. This can be confirmed from a Student 't' test. 
The number of compounds and the number of descriptors must 
be in a ratio of at least 5:1. MLR model that fits well the 
normalized data will give a scatter plot of experimental 
inhibition concentration versus predicted inhibition 
concentration which eventually shows a lower deviation of the 
contour points from the line of fit (figure 1). 
 
2.10 Evaluation of the QSAR Models 
 
      The developed QSAR models were evaluated using the 
following statistical parameters, N (number of compounds in 
regression), P (number of descriptors), R2 (squared correlation 
coefficient), F- test (Fischer's value), Q2

CV (Cross-validation 
correlation coefficient) R2pred. (square correlation coefficient 
for external testset). The R2 regression coefficient and the Q2

CV 
cross-validation correlation coefficient are the two most 
important determining factors that should be taken into 
consideration in accepting any validated QSAR model (Arthur 
et al., 2016). A model is alleged to be significant only if it has 
fulfilled the following conditions: R2 > 0.6, Q2

CV > 0.6 and 
R2

pred > 0.5. Taking into account the statistical parameters, we 
opted for a high-value model Q2

CV (cross-validation correlation 
coefficient) and R2 (correlation coefficient for the training set) 
as the best model. 
      . 
2.11 Internal Validation of the QSAR Model 
 
          Internal validation is the first step in validating the 
QSAR model. The expected results of internal validation 
indicate that, the model permeates a higher level of stability 
and reliability (Abdulfatai et al., 2016, 1). The Square 
correlation coefficient (R2) designates the division of the total 
variant accredited to the model. The closer the value of R2 to 
1.0; the better the model generated. R2 is one of the most 
commonly used internal validation parameters and can be 
calculated using Equation 4, expressed below as: 
          

�� = � − ∑
�!��. − �#$%&.��
∑
�!��. − �'$�	�	�(��                                                 ()) 

 
Where, �!��., �#$%&., and  �'$�	�	�( are the observed, predicted 
a mean inhibition concentration of the compounds in the 
training set (Alho et al., 2010). The R2 value is directly 
proportional to the number of descriptors in the model. 
Therefore, we cannot sonly rely on the R2 value in the 
development of the model. However, R2 needs to be adjusted 
to the number of descriptors used in the model. The adjusted 
R2 can be calculated using equation 5 given below as: 
 

��&�.� = � − (� − ��) � − �� − # − � = (� − �)�� − #� − # + �              (*) 

 
Where n is the number of training set compounds and p is 
the number of descriptors used in the model. 
 
      

      However, the predictive power of the QSAR model was 
also determined by the use of Friedman's lack of Fit (LOF), 
which is one among other criteria of internal validation 
assessment. The lack of Friedman's Fit (LOF) was calculated 
using Equation 6, given below as: 
 

+,- = ���
.� − / +  &#0 1�                                                                (2) 

 
Where SEE is the standard estimation error, also known as 
standard deviation (SD), p is the number of independent 
variables in the model, d is a user-defined smoothing 
parameter, c is the number of terms in the model, and N is the 
number of the compound in the training set. However, a model 
is alleged to be vigorous if it has a smaller SEE value. The 
SEE can be calculated using Equation 7, expressed below as: 
 

��� = 3
�%4#. − �#$%&.��
0 − 5 − �                                                           (6) 

 
Where, �%4#.  and �#$%&.   are the experimental and predicted 
inhibition concentration of the compounds in the training set. N 
is the number of training compounds, P is the number of 
descriptors in the model (Jalali et al., 2004). In addition, 
another factor that should be considered highly important when 
accessing the internal validation of a QSAR model is the 
Leave-One-out cross-validation coefficient. The cross-
validation regression coefficient (Q2

CV) can be calculated using 
Equation 8, given by: 
 

7/8� = � − ∑ 
�%4#. − �#$%&.���	9�∑ 
�%4#. − �:���	9�
                                               (;) 

 
Where <=>?., <?@=A., BCD <E are experimental, predicted and the 
mean inhibition concentration values of the training set 
compounds  (Jalali et al., 2004).  
 
2.12 External validation of the QSAR Model 
 
      The developed QSAR model was externally validated to 
confirm its robustness. Therefore, the external validation of the 
model was evaluated centered on its R2 value for the 
compounds in the test set. Therefore, the external predictive 
strength and the extrapolation of the models were calculated 
using the regression coefficient expression given by equation 
9, below: 
 

�F%�'� = � − ∑
�#$%&.'%�' − �%4#.'%�'��
∑
�#$%&.'%�' − �:F$�	�	�(��                                   (G) 

 
Where, �#$%&.'%�' , �%4#.'%�' , are the predicted, experimental 
inhibition concentration of the compounds in the test set and �:F$�	�	�( is the mean experimental inhibition concentration of 
the training set compounds (Tropsha et al., 2003). In addition, 
the predictive capacity of the QSAR model was also calculated 
using the excluded compounds in the test set with the aid of the 
root mean square error ( HIJ)  given by equation 10, below: 
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$�� =  $'%�'� K� − LM$'%�'� − $'%�'!� LN                                    (��) 

 
Where, $'%�'�  is the coefficient of determination for test set 
compounds and $'%�'!� is the square correlation coefficient when 
the plot of the experimental inhibition concentration against the 
predicted inhibition concentration of the test set was plotted at 
zero intercepts (Roy et al., 2012). The values of k and k′ are 
the slopes of the regression equation of the predicted inhibition 
concentration versus experimental inhibition concentration and 
vice versa (Shen et al., 2002). The k and k′ can be calculated 
using equation 11, given below as: 
 

ķ = ∑ �	 �:	∑ �:	�    ��& ķP = ∑ �	�:	�	�                                                (��)  
 
Where �	  and �:	  are the predicted, mean experimental 
concentrations of the training set compounds respectively. 
Other computable relationships between the inhibition 
concentration and the descriptors were investigated by means 
of the randomization test, notably known as the Y -
randomization test, which is one among other QSAR external 
validation methods. The areas of the Y -segment were mixed 
and new QSAR models were developed using the same 
arrangement of variables as they existed in the unrandomized 
model. 
 
      However, we employed the use of a parameter denoted by 
Rp

2, which incriminate the model R2 for the difference between 
the mean square correlation coefficient (R2rand.) of the 
randomized models and the square correlation coefficient (R2) 
of the un-randomized model. The Rp

2 parameter was calculated 
by the mathematical expression given by equation 12, below: 
       

�#� = �� × M(�� − ���&.� )                                                       (��) 

 
Where the parameter R2

p ensure that, the generated models 
were not acquired by coincidence. Meanwhile, we projected 
that, the estimation of R2

p should be more prominent than 0.5 
for a credible model. 
 
2.13 Y-randomization test 
 
      The Y- randomization test is an important criterion for the 
external validation of the developed QSAR model. To 
safeguard this, the QSAR model produced was predictive and 
not acquired by fortuitous, the Y-randomization test was 
employed using the training set compounds, as suggested by 
Tropsha (Tropsha et al., 2003). However, for a model to pass 
the Y randomization test, /�#� should be greater than 0.5 (/�#� 
> 0.5). The /�#� can be calculated using equation 13, expressed 
below as: 
. /�#� = �⌈�� − (�$)�⌉�                                                              (��) 
 
Where, /�#�   is the coefficient of determination for Y 
randomization test, �  is the correlation coefficient for Y-
randomization test and �$ is average � of the random model 
(Tropsha et al., 2003). 
 

      In the randomization test, the Multiple Linear Regression 
models were completed by scrambling the inhibition 
concentration (pLC50), while maintaining the descriptors 
unchanged. The models that come after the first model usually 
have a fundamentally low R2 and cross-validation Q2

CV values 
for a few numbers of trials, which confirms that the generated 
models remained predictive and reliable. 10 Y-randomization 
tests were performed and it was perceived from the result that,  
about four of the models have an estimation of R2 and Q2

CV < 
0.5. This evaluation confirms that, the model generated was 
powerful enough and not acquired by chance occurrence 
(Arthur et al., 2016). 
 
2.14 Evaluation of the Applicability Domain of the Model 
 
      The developed QSAR model was further evaluated by 
plotting the applicability domain (Williams plot), which is the 
plot of standardized residual versus leverages. The 
applicability domain of a QSAR model is used purposely to 
examine the presence of outliers and influential compounds if 
there is and to confess the consistency and robustness of the 
generated model (Ibrahim et al., 2018). Leverage is used to 
plot the applicability domain of a QSAR model. The leverage 
can be calculated using equation 14, expressed below as: 
       T	 = �	(�F�)U V�	F, (	 = V, … #, )                                  (�)) 
 
Where �	 is the training set matrix I , X is a � × V descriptor 
matrix of the training set, and XT is the  transpose matrix X 
used to generate the model. However, leverage being a 
prognostic tool; therefore, compounds in the test set or training 
set with leverage values hi < h*  are considered to be firmly 
predictive by the model. The domain with reliable predictive 
ability is that, with has compounds (both training and test set) 
with leverage values within the threshold (hi < h*)  and 
standardized residual values not > ±� . Therefore, the 
compounds in the test set or training set with (hi > h*)  are 
believed to be influential as projected by the model. For the 
training set, the Williams plot is purposely exploited to identify 
compounds with the best structural impact (hi < h*)  in the 
development of the model (Arthur et al., 2016). The warning 
leverage (T∗ ) that is the boundary for the X values can be 
expressed using equation 15, given below as: 
 

T∗ = �(V + �)�                                                                              (�*) 

 
Where n is the number of compounds in the training set, and k 
is the number of descriptors used in the model. 
 
2.15 Quality assurance of the model 
 
      The methods of internal and external validation of a QSAR 
model were the two most significant techniques used in 
assessing the stability, robustness, reliability and predictive 
capacity of the QSAR model. The validation parameters were 
compared with the recommendation standard (Veerasamy et 
al., 2011). Table 1.0; outline the Standard General 
recommendation values for the internal and external validation 
parameters that guarantee whether to accept or to reject a 
model. 
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3. RESULTS AND DISCUSSION 

       Multiple linear regression and genetic function algorithms 
that was incorporated in a material Studio software were used 
to spawn five models. Among the five models generated, 
model 1 was selected as the best model because of its statistical 
significance (Friedman's LOF = 0.3008, R2 = 0.9784, R2adj = 
0.9739, Q 2cv = 0.9675 and R2pred = 0.7348. However, all the 
validation parameters that best endorse the reliability and 
robustness of the model were reported in table 1. This QSAR 
model is considered highly predictive because it has fulfilled 
all the prerequisite necessary for accepting any validated 
QSAR model. The IUPAC names of the compounds, the 
experimental concentrations, the predicted concentrations and 
the residual values of the compounds were reported in table 2. 
The low residual values (the difference between the predicted 
and experimental inhibition concentrations) means that, the 
model has an extraordinary predictive capacity. Five molecular 
descriptors were selected to build a linear model which shows 
an improved  inhibition concentrations result of the compounds 
from genetic function algorithm. 
. 
 
 
 
 

Model 1 
 
pLC50 =   0.037617197 * (AMR) + 0.948665366 
*(SpMax8_Bhp) - 2.448219792 * (FPSA-2) + 0.133743691 
*( MOMI-YZ) + 0.114650757 * (RDF50m) - 0.342918766  
 
Friedman’s +,- = 0.3008, �'$�	�	�(� = 0.9784, ��&�[�'%&� = 
0.9739, \/8� = 0.9675,      0'$�	�	�(= 30,  �#$%&	/'%&� . = 0.7348  0'%�'= 13 
 
      The validation parameters (internal and external) developed 
for each model using the genetic function approximation were 
reported in table 3.  The molecular descriptors used for the 
training and test compounds with their experimental and 
predicted inhibition concentration were reported in table 4 and 
5, respectively. 
 
      The Pearson correlation matrix of the five descriptors used 
in this computational study was reported in table 6. The 
correlation coefficient between each descriptor in the model 
was significantly low, which means that, there is no much 
correlation between the descriptors used in the development of 
the model. 
 

Table 1- General minimum recommended value for an acceptable QSAR model. 
  Symbol Name Acceptable Value 

�� Coefficient of determination ] �. 2 5G*% Confidence interval at 95% confidence level _ �. �* \/8�  Cross-validation coefficient ] �. * �� − \/8�  Difference between `J  and abcJ  _ �. � 0%4'.  '%�' �%' Minimum number of external test set ] * /�#� The coefficient of determination for Y-randomization   > �. * 
 
Table 2- Showing Herbicide IUPAC Name, Experimental pIC50, Predicted pIC50 values and Residual Values of the 
generated MLR model. 

S/N IUPAC Name pLC 50Exp

. 
pLC 50Pred. Residual 

1 
 

2.96 2.81 -0.15 

2 

 

2.51 2.03 -0.48 

3 

 

3.67 3.45 -0.22 

4 
 

3.04 3.01 -0.03 

5 
 

5.63 5.50 -0.13 

6 

 

4.41 4.14 -0.27 

7 

 

3.26 3.07 -0.19 

8 

 

0.95 1.29 0.34 

9 

 

3.03 2.77 -0.26 

10 3.04 2.76 -0.28 
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11 

 
2.18 2.30 0.12 

12 
 

3.32 3.17 -0.15 

13 
 

1.8 1.64 -0.16 

14 
 

2.02 2.29 0.26 

15 
 

0.52 0.46 -0.06 

16 

 

5.51 5.34 -0.17 

17 

 

1.66 1.88 0.22 

18 
 

3.55 2.37 -1.18 

19 

 

4.14 4.43 0.29 

20 
 

2.61 2.66 0.05 

21 
 

4.98 4.19 -0.79 

22 
 

2.61 2.30 -0.31 

23 
 

3.18 3.30 0.12 

24 
 

5.53 5.56 0.03 

25 
 

3.21 3.45 0.24 

26 

 

4.16 3.17 -0.99 

27 
 

4.2 5.15 0.95 

28 
 

4.16 4.26 0.10 

29 
 

6.4 6.19 -0.21 

30 

 

5.71 8.08 2.37 

31 

 

5.95 6.22 0.27 

32 

 

3.6 3.78 0.18 

33 
 

5.85 5.45 -0.40 

34 
 

2.04 1.46 -0.58 

35 
 

3.11 3.35 0.24 

36 

 

1.91 2.42 0.51 

37 

 

4.98 4.84 -0.14 

38 

 

5.34 5.65 0.31 

39 1-chloro-N-(2-chloro-4-f luoro-5-{6-f luoro-1,3-dioxo-hexahydro-1H-pyrrolo[1,2-c]imidazolidin-2-
yl}phenyl)methanesulfonamide

 

4.19 3.98 -0.21 

40 
 

6.04 5.98 -0.06 

41 

 

4.33 4.03 -0.30 

42 4.44 4.85 0.41 
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43 

 
5 5.15 0.15 

 
Table 3- Validation parameters for each model using Genetic Function Approximation (GFA) 

S/N   Model 1 Model 2 Model 3 Model 4 Model 5 Threshold value 

1 Friedman LOF 0.300795 0.305711 0.324264 0.326245 0.327771 
 

2 R-squared 0.9784 0.978047 0.976714 0.976572 0.976463 
 

3 Adjusted R-squared 0.9739 0.973473 0.971863 0.971691 0.971559 
 

4 Cross validated R-squared 0.967515 0.967247 0.964517 0.964853 0.960061 
 

5 Significant Regression Yes Yes Yes Yes Yes   

6 Significance-of-regression F-
value 

217.4193 213.846 201.3358 200.0839 199.1301   

7 Critical SOR F-value (95%) 2.64405 2.64405 2.64405 2.64405 2.64405   

8 Replicate points 0 0 0 0 0   

9 Computed experimental error 0 0 0 0 0   

10 Lack-of-fit points 24 24 24 24 24   

11 Min expt. error for non-
significant LOF (95%) 

0.21014 0.21185 0.218184 0.218849 0.219361   

 
Table 4- Calculated descriptor values for the training sets with their experimental and predicted concentrations. 

Molecules AMR SpMax8_Bhp FPSA-2 MOMI-YZ RDF50m Experimental 
pLC 50 

Predicted 
pLC 50 

4 77.1585 2.192375 0.971161 1.368516 4.938247 3.04 3.01 

5 81.3337 2.246656 0.597721 6.505179 10.84811 5.63 5.50 

6 73.6698 1.855351 0.62989 3.441717 9.041087 4.41 4.14 

8 77.7131 2.368499 0.990879 1.027995 4.619998 3.26 3.07 

9 47.3379 1.147726 0.663697 2.028204 1.060182 0.95 1.29 

10 85.9427 2.45754 1.622312 1.648164 11.35794 3.03 2.77 

11 61.6751 1.918317 1.000945 2.015574 9.995276 3.04 2.76 

12 63.455 2.303188 1.210624 2.76899 5.756426 2.18 2.30 

13 75.9645 2.413115 1.603034 3.894527 15.41641 3.32 3.17 

14 49.6439  1.400916 0.854616 1.769071 5.600613 1.8 1.64 

15 46.9027 0.907671 0.557558 1.631555 10.00544 2.02 2.28 

16 18.5507 0.817568 0.413431 2.539778 0.001403 0.52 0.46 

18 56.9644 1.303324 0.87168 2.500567 5.616158 1.66 1.88 

20 84.3649 2.276436 0.832989 2.848138 9.616859 4.14 4.43 

21 98.324 2.699828 1.846134 2.136735 8.547054 2.61 2.66 

23 61.3448 1.467804 0.612111 1.200149 2.45737 2.61 2.300 

25 71.256 2.257071 0.735835 1.7323 23.1274 5.53 5.56 

26 68.3294 2.31343 0.87362 4.708859 4.723874 3.21 3.45 

30 133.5519 2.811904 1.9543 3.782769 27.18359 6.4 6.19 

32 122.1024 2.768123 1.194735 3.399947 15.81433 5.95 6.22 

33 97.112 2.650921 1.659118 1.221423 16.1747 3.6 3.78 

34 85.6045 2.349084 0.610816 5.913709 9.17447 5.85 5.45 

36 108.0014 2.75524 2.319869 3.399239 19.56198 3.11 3.35 

39 91.0298 2.247382 0.490221 4.857742 8.623428 5.34 5.65 

42 111.577 2.671396 1.600715 8.795199 20.34854 6.04 5.98 

43 92.7797 2.502606 1.116026 2.007745 8.517236 4.33 4.03 
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44 76.0325 2.45754 0.797488 2.146059 14.51517 4.44 4.85 

45 114.8064 2.882648 1.452049 5.385797 11.07858 5 5.15 

1 57.8325 1.25614 0.476029 2.03909 5.959689 2.96 2.81 

17 107.7082 2.665925 1.421546 1.768612 20.44443 5.51 5.34 

 
Table 5- Calculated descriptors for the test set with their experimental and predicted Activity. 

Molecules AMR SpMax8_Bhp FPSA-2 MOMI-YZ RDF50m Activity Predict 

2 53.1163 1.246209 0.547225 2.763915 1.450453 2.51 2.03 

3 60.7273 1.479485 0.592166 8.461216 3.651049 3.67 3.45 

19 54.3212 1.66715 0.850731 2.593675 7.153605 3.55 2.37 

22 91.2674 2.665925 1.074292 2.856846 7.112731 4.98 4.19 

24 70.4077 1.840996 0.723742 1.335393 7.309965 3.18 3.30 

27 98.6457 2.684169 1.884564 5.179453 10.28315 4.16 3.17 

28 115.3564 2.665925 1.619995 2.890615 19.21301 4.2 5.15 

29 74.3812 1.977655 0.678168 9.250508 3.035912 4.16 4.26 

31 125.5065 2.745364 1.025938 5.845965 24.63727 5.71 8.08 

35 63.5926 2.315266 1.754143 4.465842 7.913456 2.04 1.46 

37 55.904 1.718534 0.723825 3.15644 3.283551 1.91 2.42 

38 81.9939 2.45754 0.880807 2.441991 13.95963 4.98 4.84 

41 88.4505 2.476088 1.183455 2.169109 10.96011 4.19 3.98 

 
Table 6- Pearson’s correlation matrix of the descriptors in Selected QSAR model. 

  AMR SpMax8_Bhp FPSA-2 MOMI-YZ RDF50m 

AMR 1 
 

   

SpMax8_Bhp 0.890651 1    

FPSA-2 0.694943 0.699339 1   

MOMI-YZ 0.378794 0.333113 0.089971 1  

RDF50m 0.719901 0.639811 0.605965 0.256842 1 
 

 

 

   
 
Table 7- Y-Randomization Test Parameters 

      The Y-randomization test being one among other 
essential methods used in the validation of the QSAR model 
externally. The Y- randomization test was reported in Table 
7. It was observed from the result that, the low values of �� 
and \/8�   for the number of trials allow us to say that, the 
constructed model was reliable, stable and robust. While, the /�#�  value was much higher than 0.5 which signifies that, 
the built model was powerful and not inferred by Trial and 
error. 
 
      The description and other related statistical parameters 
that may have a greater impact on the selected descriptors 
were reported in table 8. The appearance of 2D and 3D 
descriptors in the model shows that, these types of 
descriptors will have a greater affinity (increase the 
inhibition concentration of the compounds). The values of 
the variance inflation factor (VIF) for all the five descriptors 
of the model were lower than 7, which indicates that, the 
descriptors were orthogonal and the model validity was 
highly significant. The null hypothesis suggesting that, there 
is no significant relationship between the inhibition 
concentration and the descriptor used in the construction of 
the model at P < 0.05. The P- values of the descriptors in the 

Model R R^2 Q^2 

Original 0.989141 0.9784 0.967515 

Random 1 0.522795 0.273315 -0.16266 

Random 2 0.500953 0.250954 -0.13068 

Random 3 0.46971 0.220627 -0.16702 

Random 4 0.579175 0.335444 -0.09836 

Random 5 0.354832 0.125906 -0.29534 

Random 6 0.314135 0.098681 -0.47183 

Random 7 0.559705 0.31327 -0.13038 

Random 8 0.306126 0.093713 -0.41786 

Random 9 0.262277 0.068789 -0.70639 

Random 10 0.360066 0.129647 -0.54853 
    

            Random Models Parameters 
 

Average r : 0.422977 
  

Average r^2 : 0.191035 
  

Average Q^2 : -0.31291 
  

cRp^2 : 0.884432 
  

JC
EC



 JCEC - ISSN 2527-1075. 

model at 95% confidence limit were reported in table 8, which
are all less than 0.05. This implies that, the null hypothesis was 
actually rejected. Thus, we accepted the alternative hypothesis 
which predicts that, there exists a significant relationship 
between the concentration of the inhibitor molecule and the 
descriptor. Thus, we can conclude that, there is a significant 
relationship between the concentration of the inhibitor 
compounds and the descriptors used in the construction of the 
model at 95%  probability level. 
 
      The plot of the predicted inhibition concentration against 
the experimental concentration of inhibition of the training and 
test compounds was reported in Figure 1 and 2, respectively. 
The R2 value of 0.9784 for the training set and the R2 value of 
0.7348 for the test compounds as reported in this study, was in 
agreement with the genetic function approximation 
recommendations report reported in table 1. This confirms the 
robustness and reliability of the model. The plot of the 
standardized residual versus experimental inhibition 
concentration shown in Figure 3 indicates that, there was no 
reasonable error in the generated model since the spread of the 

standardized residual values was virtually on both sides of the 
zero (Jalali et Al., 2004). 
 
      The leverage values for the complete set of compounds in 
the data set were plotted against their standardized residual 
values. The Williams plot, that is, a plot of standardized 
residual versus leverage value was shown in Figure 4. This plot 
really helps us to inspect outliers and influential compounds in 
the model. From our result, it is clear that, all compounds 
(training and testing) were within the square discrimination of 
± 3 of standardized residual. Therefore, no outlier compound is 
found in this study. However, only two compounds from the 
test set with ID-31 and ID-35 are said to be an influential 
compound. This is because their leverage values are greater 
than the warning leverage (T > T∗ ). This behavior was 
attributed due to differences in their molecular structures as 
compared to other compounds in the entire data set.  
      

                    Table 8 - List of the descriptors, their description, classes, and their statistical significance.       
Statistics  

 

S/N Descriptor 
Symbol 

Description Class VIF ME P-Value 

1 AMR Molar 
refractivity 

2D 6.31 0.74 8.54E-08 

   

2 SpMax8_Bhp The largest 
absolute 

eigenvalue of 
Burden modified 

matrix - n 8 / 
weighted by 

relative 
polarizabilities  

2D 5.18 0.50 4.15E-05 

3 FPSA-2 PPSA-2 / total 
molecular surface 
area 

3D 2.33 -0.64 4.03E-14 

   
4 MOMI-YZ Y/Z  3D 1.26 0.10 0.00024 

   

5 RDF50m Radial 
distribution 
function - 050 / 
weighted by 
relative mass 

3D 2.18 0.30 4.19E-10 
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        Figure 1- A plot of Predicted (pLC50) versus Experimental (pLC50) of the training set

 
 

 

 
 
                                      Figure 2- A plot of Predicted (pLC50) versus Experimental (pLC50) of the test set. 
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Figure 3- A plot of Residual versus Experimental (pLC50) 
of the training and test set 
 

 
 
Figure 4- Williams Plot, A plot of standardized residual 
versus Leverage 

4. CONCLUSION 

      QSAR studies were carried out in a set of data from 43 
heterocyclic and phenylic compounds used as potent 
herbicides. The Density Functional Theory (DFT) optimization 
method was used in minimizing the energy of the 3D 
structures. The Genetic function algorithm (GFA) that was 
incorporated into the material studio software was used to 
developed five QSAR models. Among the five models 
generated, model 1 was selected as the best model because of 
its statistical significance (Friedman's LOF = 0.3008, R2 = 
0.9784, R2

adj = 0.9739, Qcv
2 = 0.9675 and R2

pred = 0.7348). The 
relative impact of each descriptor on the model was accessed 
using the mean effect (ME). However, it is evident that, a 
decrease in the molecular surface area PPSA-2/total of the 
descriptor FPSA-2 with negative mean effect of - 0.6429 will 
increase the inhibition concentration of the compounds. 
Whereas, an increase in AMR  (molar refractivity), 
SPMAX8_BHP (Largest absolute eigenvalue of Burden 
modified matrix - n 8 / weighted by relative polarizabilities), 
Momi-YZ (Y/Z)  and RDF50m (Radial distribution function - 
050 / weighted by relative mass) of the descriptors with 
positive mean effects of 0.7402, 0.5006, 0.9992 and 0.3022 
will increase the inhibition concentration of these compounds. 
The QSAR result developed in this study actually correlates 
with the standard recommendation values reported ealier in 
table 1. The positive mean effects values of some descriptors 
actually provide a good idea in designing new herbicides with 
improve activity. 
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