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The study of the quantitative structure-activitiat®nship (QSAR) was used in a set of data
from 43 heterocyclic and phenylic inhibitor compdarin order to establish a correlation
between the inhibitory concentrations of the conmaisuin question and their structures. The
optimization method of the density functional thg®FT) was used to minimize the energy
of the 3D structures using the Becke functionabridyExchange (B3) parameter with the
Lee, Yang, and Parr Functional Correlation (LYPdnemonly called the B3LYP functional
Hybrid and 6-31G* Basis Set (B3LYP/6-31G*) methad, discover their molecular
Quantum descriptors. Five models of QSAR were géegtrwith the technique of genetic
function algorithm (GFA). Among the five models egated, model 1 was selected as the
best model because of its statistical significa(fededman’s LOF = 0.3008, = 0.9784,
RZ%q = 0.9739, Q2 = 0.9675 and Ryeq = 0.7348).The meticulous model was evaluated by
means of the Leave One out cross-validation (LOQ-&\roach, external validation of the
compounds of the test set, Y -randomization tedtagplicability domain (Williams Plot).
The proposed QSAR model was highly predictive agdraus with good validation
parameters. The molecular descriptors used in tlelegh should be considered of great
importance in improving the inhibitory concentrat® of the herbicides and also in the
conception of new herbicides with a higher concaign of inhibitor.

RESUMO

O estudo da relagdo quantitativa estrutura-ativida@SAR) foi utilizado em um conjunto
de dados de 43 compostos de inibidores heteroofckcfenilicos, a fim de estabelecer uma
correlagdo entre as concentragfes inibitdrias dompostos em questao e seus Estruturas.
O método de otimizacdo da teoria funcional da diade (DFT) foi utilizado para
minimizar a energia das estruturas 3D utilizandparametro hibrido funcional de Becke
(B3) com a correlacdo funcional de Lee, Yang e R#&YP), comumente denominada
B3LYP funcional hibrido e 6-31G * base Set (B3LY®I& *) método, para descobrir seus
descritores Quantum molecular. Cinco modelos de RQ®%am gerados com a técnica de
algoritmo de funcdo genética (GFA). Entre os cinnodelos gerados, o modelo 1 foi
selecionado como o melhor modelo por causa de mudfisancia estatistica (LOF de
Friedman = 0,3008, R= 0,9784, R.j = 0,9739, Q2 = 0,9675 e Ryeq= 0,7348). O modelo
meticuloso foi avaliado por meio da abordagem Le@we out Cross-Validation (LOO-CV),
validagdo externa dos compostos do conjunto de,testte de randomizagéo Y e dominio de
aplicabilidade (Williams Plot). O modelo QSAR prefmdoi altamente preditivo e vigoros
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com bons parametros de validag&o. Os descritordscutares utilizados no modelo devem
ser considerados de grande importancia na melhaida concentracdes inibitérias dos

herbicidas e também na concepg¢édo de novos herlicatan maior concentracdo de
inibidores.
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1. INTRODUCTION

Herbicides are chemical compounds that inhibit cififé
metabolic processes in plants. They are extensiuegd in
agricultural purposes as an agent of destructioainat
undesirable crops (weeds). Weeds usually struggle ather
species of crops for nutrients, sunlight, and wdterlddition,
weeds are capable of influencing plant growth,seaua
decline in crop production and quality (Prasad let 2011).

narcotics drugs and in the synthesis of new agrmodas.

These QSAR methods were established by Hanschraed f
Wilson (Tak& et al., 1991) starting from 1D, 2D linear free-
energy correlation, 3D QSAR of Crammer, 4D. HopéindpD
Vedani and 6D (Hansch et al., 1963). The 1D, 2D aifer
similar methods were generally referred to as $€ia
Methods ". The classical method was succeeded thigh
approximation of the genetic function algorithm @F
(Rasulev et al., 2005). The GFA technique doeonbt select
the integer number of descriptors in the regresstody but,

However, weeds are usually the causative agent @$t myisg introduces multiple linear regression (MLR)tbe use of

pathogens, pests, and viruses, which can contrigxtremely
to the blowout of diseases in plant and insect speshe
herbicides being the safest and the most effecivay to
control weed can play a vital role in mechanizeunfag. The
fortification of crops continually needs the diseoy of new
innovative herbicides. However, mechanized andelamaple
farming is attainable with the help of herbicideEhe
herbicides play a reliable role in the unified mgement of
weeds (Funar et al., 2017).

A large species of herbicide was developaty édaom the
structure to the genre of actions (Troyer et &1Q1). The first
commercial herbicide that was discovered at thenpéng of
1948 was 2.4-dichlorophenoxyacetic acid (2.4-D)

tendency in its structure and chemical activity waed in the
designation of new inhibitors (Liu et al., 2013heTherbicides
perform their function by influencing the electréransport
system of the plants during the process of photbegais
(Dayan et al.,, 2012). The slowdown of the electflomw to

participate in the binding of the plastoquinone atig

eccentricity of the electron in the photosysten®P$l) was of
great significance in photosynthesis. The relocatibelectron

from the PSI to itsQB binding site of the D1 subunit of

photosystem 1l (PSIl) is succeeded with the help thodé
plastoquinone. A lot of classes of herbicides (erga, triazine
pyridines etc.) can be destined to the undisceriSg QB
binding site. PSII plays a vital role in photosyesls and also
in plant growth (Zhang et al. 2014)B is a complex proteins
sheath, which captures light from the sun and liieésthe light
oxidation of water to atmospheric oxygen. A seqeeoiclight-
inspired electron transfer reactions proceedsénDh and D2

subunit of PSIl. TheQB binding site of D1 protein is the

finishing point of the electron transfer procesgha PSIl and
is also the livelihood target of most herbicideseribicides
always displaces the plastoquinone from @8 binding
position (Pfister et al., 1979).

The quantitative structure-activity relatibips (QSAR) is a
technique used in the establishment of mathemataral
computational models that strive to establish adgomrrelation
between molecular structures (descriptors) and epti@s
(concentrations) using a Chemometric method (Cruale
2014). However, in the contex of the molecular gesithe
word “structure” refers to molecular descriptor dlie

straight-line, higher order polynomials, splinesd gaaussian
(Cho et al., 2001, 18). The algorithm technique wasd to
select the best descriptors in the regression mguafhe
genetic function algorithm could help as a valughiecedure
for probing the large probability space with a Erumber of
descriptors for a small number of molecules. Theerse of
this research was to develop a predictive QSAR ahading
30 compounds as training set. However, if the dged

QSAR models were reasonable enough, it may be aose t

predict the inhibition concentration of the unknown
compounds. In addition, the prosperous QSAR modélls
certainly decrease the number of compounds to béhagized
more especially in pharmaceutical laboratories, retbg,

. : “ l%ﬁaking it an easy and affordable technique tocedwost and
Zimmerman (Zimmerman et al., 1948). In additione thjme duration with regards to developing

new dragsl

agrochemicals.

2. MATERIALS AND METHOD

2.1 Experimental Dataset

43 compounds were used in this study as datia
comprising a mixture of Sulfonyl Urea, Triazineseroate,
Acetamides, Pyridines, etc. The inhibition concatidn of
these compounds has been reported in the literé@aad et
al., 2015). The dataset, along with its chemicaltiatt service
record number (CASRN), IUPAC names, common names, a
various physicochemical properties has been selecten a
simplified molecular input line String file syste@ommonly
abbreviated as SMILES. The result of the inhibitory
concentration was expressed in bQpLCso = - log(LGso)
which is the concentration at 50% maximum inlpit

2.2 Geometry Optimization

The procedure of calculating the equilibrium geametr
lowest energy conformation of a molecule is caltedlecular
optimization (Abdulfatai et al., 2015). The 2D stiures of the
compounds were drawn with the help of ChemDraw aJltr
version 12.0 software and the drawn compounds se&ved in
a format called CDX file format (Ibrahim et al., Z&). The 3D
conformations of the compounds were optimize using
programmed software package called Spartan 14.01\.

compounds (Verma et al., 2010). While, the Chemdmetyaye function (Arthur et al., 2016). The molecusaructures
method employs artificial neural networks (ANN),in@ipal were in the first place pre-optimized using the Benpirical
component regression (PCR), Principal Componentlys® method purposely to reduce the tension in the nuselefore
(PCA), multiple linear regression (MLR), partiabkt squares sypmitting the whole molecules to DFT (density fimwal
(PLS), genetic function algorithm (GFA) etc. Howevgeveral theory) exploring the Becke three parameters exghan
approaches to the QSAR studies have been establtsler a fynctional (B3) hybrid with Lee, Yang and Parr Ftiogal

period of about a hundred years ago and have lestted as a correlation (LYP), usually abbreviated as B3LYP dlet al.,
good predictive measure, particularly in the desinnew
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1988) and by the use of 6-31G* basis set for cotaple

optimization of the 3D structures. The optimizedursan files
of all the molecules were then saved in a formieddhe sdf
file format, which is the only input entry formatat can be
recognized by the Padel-Descriptor V 2.20 softwaaeniji et
al. 2018).

2.3 Molecular Descriptor Calculations

Molecular descriptor is a mathematical vabadigure that
describe properties of molecules acquired from ecurate
algorithm or experimental procedure (Olasupo et 2017).
Quantum chemical descriptors were calculated udimg
optimization software of Quantum chemistry knowrSpsrtan
' 14 version 1.1.2 (Abdulfatai et al., 2017). Ttesdiptors of
the various dimensions (1D, 2D, and 3D) were cated with
the help of Padel software version 2.18. The totalecular
descriptors of 1875 (1444 1D, 2D, and 431 3D) vggeerated
from the Padel descriptor software and the Spartdd "
Software (Arthur et al., 2016).

2.4 Data Normalization

The descriptors obtained from the Padel swofwwere
unvarying by a procedure that makes use of rangeikum
and minimum with the dispersion of the moleculasaiptors
using standard deviation or variance. Thus, thénslmg of
the descriptors was achieved before the data wansformed
over into an N distribution (0, 1, 2... N). Thisopedure

2.7 Relative Importance of Each Descriptor to the Mdel

The definitive meaning of the mean effect (ME) efle
descriptor was used as a good measure to evahetbhsolute
prominence and impact of each descriptor to the aihdthe
mean effect can be calculated using Equation lenghelow
as:

B;Xi D;

ME =12t 70
¥7(B; Xt D;)

€y

Where,ME is the mean effect of descriptdiin the developed
QSAR model, whilgg;, is the coefficient of descriptal, Dj is
the value of each descriptor in the data set foh eaolecule in
the training compoundsn is the number of descriptors that
appear in the model and is the number of training set
compounds (Minovski et al., 2013)

2.8 Degree of Contribution of Selected Descriptors

The significant impact of each designated desarifgdo
take into account the standardized regression icasfts ;)
as the factor that must be condidered in measuhagiegree
of impact of each descriptor to the model. The cadized
regression coefficients; can be calculated using Equation 2
,given by the expression below:

enables the correlation between descriptors mucks le

redundant (Panchal et al., 2013).
2.5 Data Pretreatment

The descriptors generated from the PaDELwso# were
pre-treated using software popularly known by tharmacist

ps =30

- @

y

Whereb; is the regression coefficient of descripfoss; and
S, are the standard deviations of each descriptor and
concentration respectively. Emphasis was placedcentain

as DTC LAB, meaning; Drug Theoretical Cheminforrosti descriptors that reveal a larger standardized iooeft value.

Laboratory. However, since a large number of dptars have
been generated, it is therefore important to emphy
applicable technique to eliminate the less
descriptors. Molecular descriptors showing almagstat values
were detached from all
descriptors having a very low variance were algwoiigd in
order to decrease the Loch descriptor. The descsighowing
a small level of intercorrelation were retained yRet al.,
2015).

2.6 Generation of Training and Test Set

In the development of a validated QSAR modled, data
set of 43 compounds were divided according to Kedhrzend

Stones into 70% of training and 30% of test se@isiMLR

ensembles and the molec

2.9 Model development

impdrtan

The multiple linear regression (MLR) study was

uy.IJ%"rformed with the aid of the genetic function aithon

(GFA) that was incorporated in the material studastware
purposely to discover the ideal number of the desarin the
model. Genetic function algorithm is a computereaid
descriptor calculation method that has been stirfiexin
engineering and computer scientist (Saidi et @162. GFA
not only inevitably selects the prime number ofadgdors in
the regression analysis but, also creates a niltijplear
regression models (MLR) by the use of linear, higbeler
polynomials, splines and Gaussians (Cho et al.,1R00he

showed an orthodox correlation between the

information division software obtained from the Druconcentrations (pL&) and the molecular descriptors. The

Theoretical Cheminformatics
(Kennard and Stone 1969). The Kennard and Storggitim
existed with a prodigious success in the recent RSAidies
and remained a valuable tool to build the botmtraj and test
sets compounds. 70% of the entire data set wera insthe

Laboratory (DTC LAB.Jniversal expression for MLR is given by equatiomb@&low:

Y = Qg + a1X1 + a2X2 + a3X3 + "‘aan (3)

Where,Y is the dependent variable (inhibition concentrgtio

development of the QSAR model. The remaining 30%hef X, X, .., X are the independent variables (descriptors)
data set were used to validate the developed QSABem existing in the model with their equivalent regiess

externally.

coefficients ofa,, a,,..., a,, respectively, andy, is the
constant term of the model. The explanation ofithpact of
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the individual descriptorsXi, Xz, ..., X depends on the
corresponding coefficient value of each descripiorthe

regression equation and its numerical sign (Rogl.et2015).

However, each regression coefficient should beifsigmt at

95% probability level (P < 0.05), otherwise call@$%%

confidence limit. This can be confirmed from a Sod't' test.

The number of compounds and the number of descsiptoist

be in a ratio of at least 5:1. MLR model that fitell the

normalized data will give a scatter plot of expezirnal

inhibition  concentration  versus  predicted inhihitio
concentration which eventually shows a lower déwabf the

contour points from the line of fit (figure 1).

2.10Evaluation of the QSAR Models

The developed QSAR models were evaluatedgutie
following statistical parameters, N (number of campds in
regression), P (number of descriptors},(&juared correlation
coefficient), F- test (Fischer's value)?Q (Cross-validation

correlation coefficient) Rrqs (square correlation coefficient

for external testset). The?lRegression coefficient and theéd
cross-validation correlation coefficient are theotwnost
important determining factors that should be takieto
consideration in accepting any validated QSAR mddeihur
et al., 2016). A model is alleged to be significanty if it has
fulfilled the following conditions: R> 0.6, Gcv > 0.6 and
R2ea > 0.5. Taking into account the statistical parargetwe

However, the predictive power of the QSAR elodas
also determined by the use of Friedman's lack bf(IFDF),
which is one among other criteria of internal vatidn
assessment. The lack of Friedman's Fit (LOF) wéculzded
using Equatior®, given below as:

SEE
_c+dp

(1 N)Z

Where SEE is the standard estimation error, also known as
standard deviation (SD)p is the number of independent
variables in the modeld is a user-defined smoothing
parameterg is the number of terms in the model, ads the
number of the compound in the training set. Howegaenodel
is alleged to be vigorous if it has a smal®&EE value. The
SEE can be calculated using Equatibrexpressed below as:

LOF = (6)

(Yexp. - Ypred.)2

SEE = N—P-1

(7

Where,Y,,, andY,,.; are the experimental and predicted
inhibition concentration of the compounds in trertng setN

is the number of training compounds, is the number of
descriptors in the model (Jalali et al., 2004). dddition,
another factor that should be considered highlyortgmt when

opted for a high-value modeP§ (cross-validation correlation accessing the internal validation of a QSAR modelthe

coefficient) and R (correlation coefficient for the training set) eave-One-out

as the best model.

2.11 Internal Validation of the QSAR Model

Internal validation is the first step iralidating the
QSAR model. The expected results of internal vélida
indicate that, the model permeates a higher lefatability
and reliability (Abdulfatai et al., 2016, 1). Thequ&re

cross-validation coefficient. The ssro
validation regression coefficient &) can be calculated using
Equation 8, given by:

?:1 (Yexp. - Ypred.) ?

Z?:l (Yexp. - 7) ’

qgv =1- (8)

WhereY,,,, Y,

wreda, and Y are experimental, predicted and the

XDp.

correlation coefficient (B designates the division of the totalnean inhibition concentration values of the trajniset

variant accredited to the model. The closer theiesaif R to
1.0; the better the model generated. iR one of the most
commonly used internal validation parameters and ba
calculated using Equation 4, expressed below as:

Z(Yobs. - Ypred.)2

R*=1- 5
Z(Yobs. - Ytraining)

(C))

compounds (Jalali et al., 2004).
2.12 External validation of the QSAR Model

The developed QSAR model was externally validated t
confirm its robustness. Therefore, the externatiasibn of the
model was evaluated centered on R& value for the
compounds in the test set. Therefore, the extguredictive
strength and the extrapolation of the models wealeutated

Where,Y ops., Yprea, and Y qining are the observed, predicted;sing the regression coefficient expression givgreguation

a mean inhibition concentration of the compoundsttie
training set (Alho et al.,, 2010). ThB? value is directly
proportional to the number of descriptors in the delo
Therefore, we cannot sonly rely on ti®¢ value in the

development of the model. Howevét? needs to be adjusted

to the number of descriptors used in the model. ddjested
R? can be calculated using equation 5 given below as:

-1 (m-1DR*-p
n-p—-1

2

n-p +1 ®)

Where n is the number of training set compounds gnts
the number of descriptors used in the model.

9, below:

2
Z(Ypre‘i-test — Yexp-test)

— 2
Z(Ypred.test - YTraining)

R%est =1-

9

Where,Y pred, ...+ Yexpros; » @r€ the predicted, experimental
inhibition concentration of the compounds in thet teet and
Y rraining 1S the mean experimental inhibition concentratién o
the training set compounds (Tropsha et al., 20@3addition,
the predictive capacity of the QSAR model was afsloulated
using the excluded compounds in the test set Wwélatd of the
root mean square errorfn?) given by equation 10, below:
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/ 2 2
Tiest — Ttest,

Where,r%,,, is the coefficient of determination for test s
compounds and%estois the square correlation coefficient whe
the plot of the experimental inhibition concenwatagainst the
predicted inhibition concentration of the test wes plotted at
zero intercepts (Roy et al., 2012). The valuek ehdk’ are
the slopes of the regression equation of the piedlimhibition
concentration versus experimental inhibition comeion and
vice versa (Shen et al., 2002). Theandk’ can be calculated
using equation 11, given below as:

In the randomization test, the Multiple LindRegression
) (10)  models were completed by scrambling the inhibition
concentration (pLC50), while maintaining the degsiis
elechanged. The models that come after the firstainosually
Il']1ave a fundamentally lo®? and cross-validatio@?cv values
for a few numbers of trials, which confirms tha¢ thenerated
models remained predictive and reliable. 10 Y-ranidation
tests were performed and it was perceived fronréhalt that,
about four of the models have an estimatiolRdand Q%cv <
0.5. This evaluation confirms that, the model gatest was
powerful enough and not acquired by chance occoeren
(Arthur et al., 2016).

rm? = r§e5t<1 -

SY.¥ 2.14 Evaluation of the Applicability Domain of theModel
_ it

TOXY;

Y;Y;
and Kk’ =Z - !

Y? D The developed QSAR model was further evatlidtg
plotting the applicability domain (Williams plotyyhich is the
Where Y; and Y; are the predicted, mean experimentglot of standardized residual versus leverages. The
concentrations of the training set compounds resmdyg. applicability domain of a QSAR model is used puglpsto
Other computable relationships between the inloibitiexamine the presence of outliers and influentiahgounds if
concentration and the descriptors were investighietneans there is and to confess the consistency and robsstaf the
of the randomization test, notably known as the Y generated model (lbrahim et al., 2018). Leveragesisd to
randomization test, which is one among other QSARreal plot the applicability domain of a QSAR model. Tlegerage
validation methods. The areas of the Y -segmenewmeixed can be calculated using equation 14, expresseavizelo
and new QSAR models were developed using the same
arrangement of variables as they existed in thandomized h; = X;(X"X)~ kX7, (i=k..p) (14)
model.
WhereX; is the training set matrik, X is an x k descriptor
However, we employed the use of a paramedaoi@d by matrix of the training set, and” is the transpose matrix
Ry?, which incriminate the mod@&? for the difference betweenysed to generate the model. However, leverage being
the mean square correlation coefficient?réRd.) of the prognostic tool; therefore, compounds in the tesbs training
randomized models and the square correlation oieiti (R) set with leverage valudsi < h* are considered to be firmly
of the un-randomized model. Thg’arameter was calculatedpredictive by the model. The domain with reliabledictive
by the mathematical expression given by equatigrbé®w:  ability is that, with has compounds (both trainemg test set)
with leverage values within the thresholdi (< h*) and
2 _ p2 / 2 standardized residual values npt+3 . Therefore, the
Ry = R* x| (R* = Rgnq) 12) compounds in the test set or training set whh> h*) are
believed to be influential as projected by the nho&fer the
Where the parameteR?, ensure that, the generated modetgaining set, the Williams plot is purposely expéai to identify
were not acquired by coincidence. Meanwhile, wejgated compounds with the best structural impaet € h*) in the
that, the estimation dR?, should be more prominent than 0.8evelopment of the model (Arthur et al., 2016). Tarning
for a credible model. leverage R*) that is the boundary for th¥ values can be
expressed using equation 15, given below as:
2.13 Y-randomization test
. 3(k+1)
The Y- randomization test is an importantezion for the - n
external validation of the developed QSAR model. To
safeguard this, the QSAR model produced was piedieind Wheren is the number of compounds in the training sed, kan
not acquired by fortuitous, the Y-randomizationttegas is the number of descriptors used in the model.
employed using the training set compounds, as stegey
Tropsha (Tropsha et al., 2003). However, for a rhealg@ass 2.15 Quality assurance of the model
the Y randomization testR3 should be greater than Q{&R3

> 0.5). ThecR? can be calculated using equation 13, expressed The methods of internal and external valatabf a QSAR
below as: model were the two most significant techniques usged

assessing the stability, robustness, reliabilitgl gmedictive
capacity of the QSAR model. The validation paramseteere
compared with the recommendation standard (Veemasgtm
2 . o al., 2011). Table 1.0; outline the Standard General
Where, cR;, is the coefficient of determination for Yecommendation values for the internal and extevatidlation

randomization teStR is the correlation coefficient for Y- parameters that guarantee whether to accept oejtm:tra
randomization test anR, is averageR of the random model model.

(Tropsha et al., 2003).

(15)

'cRIZ, = R[R? — (R,)?*)? (13)
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3. RESULTS AND DISCUSSION

Multiple linear regression and genetic fumetalgorithms
that was incorporated in a material Studio softwaese used

Model 1

to spawn five models. Among the five models gemstat pLC50 = 0.037617197 * (AMR) + 0.948665366

model 1 was selected as the best model becautesbéiistical
significance (Friedman's LOF = 0.3008 R 0.9784, Ry =

0.9739, Q% = 0.9675 and Rq = 0.7348. However, all the

validation parameters that best endorse the rétiaband
robustness of the model were reported in tablehls QSAR
model is considered highly predictive because # fufilled
all the prerequisite necessary for accepting anldatzd

QSAR model. The IUPAC names of the compounds, the

experimental concentrations, the predicted conagatrs and
the residual values of the compounds were repantéable 2.
The low residual values (the difference betweenptreslicted
and experimental inhibition concentrations) mealnat,t the
model has an extraordinary predictive capacityeFnolecular
descriptors were selected to build a linear modatkv shows
an improved inhibition concentrations result af tompounds
from genetic function algorithm.

*(SpMax8_Bhp) - 2.448219792 * (FPSA-2) + 0.13374369
*( MOMI-YZ) + 0.114650757 * (RDF50m) - 0.342918766

Friedman’s LOF = 0.3008 R, gining= 0-9784 Rigjustea™
0'97391ch: 0.9675, Ntraining: 30, Rzzzredicted' =0.7348
Ntest: 13

The validation parameters (internal and exBrdeveloped
for each model using the genetic function approxionawere
reported in table 3. The molecular descriptorsdufse the
training and test compounds with their experimeraad
predicted inhibition concentration were reportedahle 4 and
5, respectively.

The Pearson correlation matrix of the fiveaptors used
in this computational study was reported in table The
correlation coefficient between each descriptotha model
was significantly low, which means that, there i much
correlation between the descriptors used in theldpment of
the model.

Table 1- General minimum recommended value for anaeptable QSAR model.
Symbol Name Acceptable Value

R? Coefficient of determination =>0.6

Pysy, Confidence interval at 95% confidence level < 0.05

Q%, Cross-validation coefficient = 0.5

R? — @Q%, Difference betweeR?* andQ, <0.3
N oxt. test set Minimum number of external test set >5

cR,Z, The coefficient of determination for Y-randomizatio > 0.5

Table 2- Showing Herbicide IUPAC Name, ExperimentaplC50, Predicted pIC50 values and Residual Valuesf the

generated MLR model.
S/N IUPAC Name pPLCsoexp pLCsopred.  Residual

1
2

o o1 b

2.96 2.81 -0.15
2.51 2.03 -0.48
3.67 3.45 -0.22
3.04 3.01 -0.03
5.63 5.50 -0.13
4.41 4.14 -0.27
3.26 3.07 -0.19
0.95 1.29 0.34
3.03 2.77 -0.26
3.04 2.76 -0.28
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11
12
13
14
15
16

17

18

19

20
21
22
23
24
25
26

27
28
29
30

31

32

33
34

35
36

37

38

39

40
41

42

1-(3.4-dichlorophenyl)-3-methoxy-3-methylurea
1-(3-chloro-4-methoxyphenyl)-3,3-dimethylurea
1-(3-chloro-4-methoxyphenyl)-3,3-dimethylurea
1-(3-methylphenyl)-5-phenyl-1H-1,2,4-triazole-3-carboxamide
1-(4,6-dimethoxypyrimidin-2-yl)-3-[(2-ethoxyphenoxy)sulfonyl Jurea
1-(4,6-dimethoxypyrimidin-2-yl)-3-[(N-methylmethanesulfonamido)sulfonyl Jurea

1-(4,6-dimethoxypyrimidin-2-yl)-3-{[ 1-methyl-4-(2-methyl-2H-1,2,3,4-tetrazol-5-yl)-1H-
pyrazol-5-yl]sulfonyl}urea

1-(4,6-dimethoxypyrimidin-2-yl)-3-{| 2-(ethanesulfonyl)imidazo| 1,2-a]pyridin-3-yl]sulfonyl } urea
1-(4,6-dimethoxypyrimidin-2-yl)-3-{[3-(ethanesulfonyl)pyridin-2-yl]sulfonyl} urea

1-(4-bromo-3-chlorophenyl)-3-methoxy-3-methylurea
1-(4-bromophenyl)-3-methoxy-3-methylurea
1-(4-chlorophenyl)-3,3-dimethylurea
1-(4-chlorophenyl)-3-methoxy-3-methylurea
1-(5-tert-butyl-1,2-oxazol-3-yl)-3,3-dimethylurea
1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea
1-(dimethoxy-1,3,5-triazin-2-yl)-3-[2-(2-methoxyethoxy)benzenesulfonyl Jurea

1,2-dimethyl-3,5-diphenyl-1H-pyrazol-2-ium methyl sulfate
1,3-dimethyl-1-[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]urea
1,4-dimethyl 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylate
1-[(2-cyclopropanecarbonylphenyl)sulfamoyl]-3-(4,6-dimethoxypyrimidin-2-yl)urea

1-[2-(2-chloroethoxy)benzenesulfonyl]-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea

1-[3-({[(4,6-dimethoxypyrimidin-2-yl)carbamoyl]amino} sulf onyl)pyridin-2-yl]-2-fluoropropyl 2-
methoxyacetate

1-[4-(4-chlorophenoxy)phenyl]-3,3-dimethylurea
1-[4-(5-tert-butyl-2-0x0-2,3-dihydro-1,3,4-oxadiazol-3-y1)-3-chlorophenyl]-3,3-dimethylurea

1-[5-(ethanesulfonyl)-1,3,4-thiadiazol-2-yl]-1,3-dimethylurea

1-{3-chloro-4H,5H,6H,7H-pyrazolo[ 1,5-a]pyridin-2-yl}-5-[methyl(prop-2-yn-1-yl)amino]- 1 H-pyrazole-4-
carbonitrile

1-{4-chloro-3-[(2,2,3,3,3-pentaf luoropropoxy)methyl|phenyl}-5-phenyl-

1-3-tert-butylphenoxy-N-(6-methoxypyridin-2-yl)-N-methylmethanethioamide

1-Chloro-N-(2-Chloro-4-fluoro-5- {6-fluoro-1,3-dioxo-hexahydro-1H-pyrrolo[ 1,2-[Jimidazolidin-2-
yl}phenyl)methanesulfonamide

1-methyl-1-phenyl-3-(2-phenylpropan-2-yl)urea
1-methyl-2-[(2-methylphenyl)methoxy|-4-(propan-2-yl)-7-oxabicyclo[2.2.1]heptane

I-methyl-3-phenyl-5-[3-(trif luoromethyl)phenyl]-1,4-dihydropyridin-4-one

2.18
3.32

1.8
2.02
0.52
5.51

1.66

3.55

4.14

2.61
4.98
2.61
3.18
5.53
3.21
4.16

4.2
4.16
6.4
5.71

5.95

3.6

5.85
2.04

3.11
1.91

4.98

5.34

4.19

6.04
4.33

4.44

2.30
3.17
1.64
2.29
0.46
5.34

1.88

2.37

4.43

2.66
4.19
2.30
3.30
5.56
3.45
3.17

5.15
4.26
6.19
8.08

6.22

3.78

5.45
1.46

3.35
2.42

4.84

5.65

3.98

5.98
4.03

4.85

0.12
-0.15
-0.16

0.26
-0.06
-0.17

0.22

-1.18

0.29

0.05
-0.79
-0.31

0.12

0.03

0.24
-0.99

0.95
0.10
-0.21
2.37

0.27

0.18

-0.40
-0.58

0.24
0.51

-0.14

0.31

-0.21

-0.06
-0.30

0.41
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5.15

0.15

S/N Model 1

Table 3- Validation parameters for each model usingsenetic Function Approximation (GFA)
Model 2

Model 3 Model 4

Model 5

Threshold value

1 Friedman LOF 0.300795 0.305711 0.324264 0.326245 0.327771 0.5
2 R-squared 0.9784 0.978047 0.976714 0.976572 0.976463 = 0.6
3 Adjusted R-squared 0.9739 0.973473 0.971863 0.971691 0.971559 = 0.6
4 Cross validated R-squared 0.967515 0.967247 0.964517 0.964853 0.960061 = 0.5
5 Significant Regression Yes Yes Yes Yes Yes
6 Significance-of-regression F- 217.4193  213.846 201.3358 200.0839 199.1301
7 \C/:?:E(?al SOR F-value (95%) 2.64405  2.64405 2.64405 2.64405 2.64405
8 Replicate points 0 0 0 0 0
9 Computed experimental erro 0 0 0 0 0

10 Lack-of-fit points 24 24 24 24 24

11 Min expt. error for non- 0.21014 0.21185 0.218184 0.218849 0.219361

significant LOF (95%)

Table 4- Calculated descriptor values for the traiing
Molecules SpMax8 Bhp FPSA-2

sets with their experimental and
MOMI-YZ

LCso
4 77.1585 2.192375 0.971161 1.368516 4.938247 :
5 81.3337 2.246656 0.597721 6.505179 10.84811
6 73.6698 1.855351 0.62989 3.441717 9.041087
8 77.7131 2.368499 0.990879 1.027995 4.619998
9 47.3379 1.147726 0.663697 2.028204 1.060182
10 85.9427 2.45754 1.622312 1.648164 11.35794
11 61.6751 1.918317 1.000945 2.015574 9.995276
12 63.455 2.303188 1.210624 2.76899 5.756426
13 75.9645 2.413115 1.603034 3.894527 15.41641
14 49.6439 1.400916 0.854616 1.769071 5.600613
15 46.9027 0.907671 0.557558 1.631555 10.00544
16 18.5507 0.817568 0.413431 2.539778 0.001403
18 56.9644 1.303324 0.87168 2.500567 5.616158
20 84.3649 2.276436 0.832989 2.848138 9.616859
21 98.324 2.699828 1.846134 2.136735 8.547054
23 61.3448 1.467804 0.612111 1.200149 2.45737
25 71.256 2.257071 0.735835 1.7323 23.1274
26 68.3294 2.31343 0.87362 4.708859 4.723874
30 133.5519 2.811904 1.9543 3.782769 27.18359
32 122.1024 2.768123 1.194735 3.399947 15.81433
33 97.112 2.650921 1.659118 1.221423 16.1747
34 85.6045 2.349084 0.610816 5.913709 9.17447
36 108.0014 2.75524 2.319869 3.399239 19.56198
39 91.0298 2.247382 0.490221 4.857742 8.623428
42 111.577 2.671396 1.600715 8.795199 20.34854
43 92.7797 2.502606 1.116026 2.007745 8.517236

predicted conentrations.
RDF50m Experimental

3.04
5.63
4.41
3.26
0.95
3.03
3.04
2.18
3.32

1.8
2.02
0.52
1.66
4.14
2.61
2.61
5.53
3.21

6.4
5.95

3.6
5.85
3.11
5.34
6.04
4.33

Predicted
pLCso
3.01

5.50
4.14
3.07
1.29
2.77
2.76
2.30
3.17
1.64
2.28
0.46
1.88
4.43
2.66
2.300
5.56
3.45
6.19
6.22
3.78
5.45
3.35
5.65
5.98
4.03
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44 76.0325
45 114.8064

1 57.8325
17 107.7082

2.882648

2.665925

2.45754 0.797488
1.452049

1.25614 0.476029

1.421546

2.146059 14.51517 4.44 4.85
5.385797 11.07858 5 5.15

2.03909 5.959689 2.96 281
1.768612 20.44443 5.51 5.34

Table 5- Calculated descriptors for the test set wh their experimental and predicted Activity.

Molecules AMR

2 53.1163

3 60.7273
19 54.3212
22 91.2674
24 70.4077
27 98.6457
28 115.3564
29 74.3812
31 125.5065
35 63.5926
37 55.904
38 81.9939
41 88.4505

SpMax8 Bhp FPSA-2
1.246209 0.547225
1.479485 0.592166

1.66715 0.850731
2.665925 1.074292
1.840996 0.723742
2.684169 1.884564
2.665925 1.619995
1.977655 0.678168
2.745364 1.025938
2.315266 1.754143
1.718534 0.723825

2.45754 0.880807
2.476088 1.183455

MOMI-YZ RDF50m Activity  Predict
2.763915 1.450453 2.51 2.03
8.461216 3.651049 3.67 3.45
2.593675 7.153605 3.55 2.37
2.856846 7.112731 4.98 4.19
1.335393 7.309965 3.18 3.30
5.179453 10.28315 4.16 3.17
2.890615 19.21301 4.2 5.15
9.250508 3.035912 4.16 4.26
5.845965 24.63727 5.71 8.08
4.465842 7.913456 2.04 1.46
3.15644 3.283551 1.91 2.42
2.441991 13.95963 4.98 4.84
2.169109 10.96011 4.19 3.98

Table 6- Pearson’s correlation matrix of the descriptors inSelected QSAR model.

AMR
SpMax8_Bhp
FPSA-2
MOMI-YZ
RDF50m

AMR SpMax8 Bhp FPSA-2 MOMI-YZ  RDF50m
1

0.890651 1

0.694943 0.699339 1

0.378794 0.333113 0.089971 1

0.719901 0.639811 0.605965 0.256842 1

Table 7- Y-Randomization Test Parameters

Model
Original
Random 1
Random 2
Random 3
Random 4
Random 5
Random 6
Random 7
Random 8
Random 9
Random 10

R

0.989141
0.522795
0.500953

0.46971
0.579175
0.354832
0.314135
0.559705
0.306126
0.262277
0.360066

RA2 Q2
0.9784  0.967515
0.273315  -0.16266
0.250954  -0.13068
0.220627  -0.16702
0.335444  -0.09836
0.125906  -0.29534
0.098681  -0.47183
0.31327  -0.13038
0.093713  -0.41786
0.068789  -0.70639
0.129647  -0.54853

Random Models Parameters

Average r :
Average "2 :
Average Q"2 :
cRp"2:

0.422977
0.191035
-0.31291
0.884432

The Y-randomization test being one among rothe

essential methods used in the validation of the R3#odel
externally. The Y- randomization test was repoitedable

7. It was observed from the result that, the lovuea ofR?
andQ?, for the number of trials allow us to say thate th
constructed model was reliable, stable and robukile, the
cR,Z, value was much higher than 0.5 which signified,tha
the built model was powerful and not inferred byaTand
error.

The description and other related statistgaiameters
that may have a greater impact on the selectediigtss
were reported in table 8. The appearance of 2D Zbd
descriptors in the model shows that, these types
descriptors will have a greater affinity (increaskee
inhibition concentration of the compounds). Theueal of
the variance inflation factor (VIF) for all the &wescriptors
of the model were lower than 7, which indicatest,thiae
descriptors were orthogonal and the model validitys
highly significant. The null hypothesis suggestihgt, there
is no significant relationship between the inhiti
concentration and the descriptor used in the coctstn of
the model at P < 0.05. The P- values of the desespn the

of
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model at 95% confidence limit were reported in ¢a®)| which

are all less than 0.05. This implies that, the hypothesis was standardized residual values was virtually on sitles of the

actually rejected. Thus, we accepted the alteredtiypothesis zero (Jalali et Al., 2004).

which predicts that, there exists a significantatiehship

between the concentration of the inhibitor molecatel the The leverage values for the complete setoofipounds in

descriptor. Thus, we can conclude that, there sigaificant the data set were plotted against their standatdiesidual

relationship between the concentration of the indib values. The Williams plot, that is, a plot of stardized

compounds and the descriptors used in the constnuof the residual versus leverage value was shown in Figuiiéis plot

model at 95% probability level. really helps us to inspect outliers and influenti@npounds in
the model. From our result, it is clear that, alimpounds

The plot of the predicted inhibition conceritbn against (training and testing) were within the square dmgration of

the experimental concentration of inhibition of th@ning and = 3 of standardized residual. Therefore, no outti@npound is

test compounds was reported in Figure 1 and 2geotisely. found in this study. However, only two compoundsnirthe

The R? value of 0.9784or the training set and tHe? value of test set with ID-31 and ID-35 are said to be arduénrdtial

0.7348 for the test compounds as reported in todys was in  compound. This is because their leverage valuesgaeater

agreement with the genetic function approximatiahan the warning leverageh(> h* ). This behavior was

recommendations report reported in table 1. Thiioos the attributed due to differences in their moleculauciures as

robustness and reliability of the model. The pldt the compared to other compounds in the entire data set.

standardized residual versus experimental inhibitio

concentration shown in Figure 3 indicates thatrghsas no

reasonable error in the generated model sincepttead of the

Table 8 - List of the descripts, their description, classes, and their statistal significance.
Statistics

Descriptor Description Class VIF ME P-Value
Symbol
1 AMR Molar 2D 6.31 0.74 8.54E-08
refractivity
2 SpMax8_Bhp The largest 2D 5.18 0.50 4.15E-05
absolute

eigenvalue of
Burden modified
matrix - n 8/
weighted by
relative
polerizabilities
3 FPSA-2 PPSA-2 / total 3D 2.33 -0.64 4.03E-14
molecular surface
area

4 MOMI-YZ YiZ 3D 1.26 0.10 0.00024

5 RDF50m Radial 3D 2.18 0.30 4.19E-10
distribution
function - 050 /
weighted by
relative mass
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6 . R¥=0.9784

Predicted (pLC50)

0 T T T T T T 1
0 1 2 3 4 5 6 7

Experimental (pLC50)

Figure 1- A plot of Predicted (pLC50) verss Experimental (pLC50) of the training set
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Figure 2- Agt of Predicted (pLC50) versus Experimental (pLC50 of the test set.
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Figure 3- A plot of Residual versus Experimental (hC50)
of the training and test set

4. CONCLUSION

QSAR studies were carried out in a set oadadm 43

heterocyclic and phenylic compounds used as potent

herbicides. The Density Functional Theory (DFT)imatation

method was used in minimizing the energy of the 3D

structures. The Genetic function algorithm (GFAgptttwas
incorporated into the material studio software weed to

developed five QSAR models. Among the five models

generated, model 1 was selected as the best medalse of
its statistical significance (FriedmarlOF = 0.300§ R? =

0.9784, Ragi =0.9739,Qc® = 0.9675and Ryeq= 0.7349. The
relative impact of each descriptor on the model aesessed
using the mean effect (ME). However, it is evidémat, a
decrease in the molecular surface area PPSA-2/tdtahe
descriptorFPSA-2 with negative mean effect ef0.6429will

increase the inhibition concentration of the commsl
Whereas, an increase iPAMR (molar refractivity),

SPMAX8 BHP (Largest absolute eigenvalue of BurdeRRTHU

modified matrix - n 8 / weighted by relative polabilities),

Momi-YZ (Y/Z) andRDF50m (Radial distribution function -
050 / weighted by relative mass) of the descriptaiith

positive mean effects dd.7402,0.5006 0.9992 and 0.3022
will increase the inhibition concentration of thesempounds.
The QSAR result developed in this study actuallyrelates
with the standard recommendation values reportdigreia

table 1. The positive mean effects values of sorsemiptors
actually provide a good idea in designing new hadeis with
improve activity.
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