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 Quantitative structure–activity relationships (QSAR) has been a reliable study in the 
development of models that predict biological activities of chemical substances based on 
their structures for the development of novel chemical entities. This study was carried out on 
44 compounds of 4-amidinoquinoline and 10-amidinobenzonaphthyridine derivatives to 
develop a model that relates their structures to their activities against Plasmodium 
falciparum. Density Functional Theory (DFT) with basis set B3LYP/6-31G∗ was used to 
optimize the compounds. Genetic Function Algorithm (GFA) was employed in selecting 
descriptors and building the model. Four models were generated and the model with best 
internal and external validation has internal squared correlation coefficient (�2) of 0.9288, 
adjusted squared correlation coefficient (�adj) of 0.9103, leave-one-out (LOO) cross-
validation coefficient (�2

cv) value of 0.8924 and external squared correlation coefficient (�2) 
value of 0.8188. The model was found to be influence positively by GATS6e, TDB10s and 
RDF30v descriptors and negatively by AATSC1s, GATS6c and C2SP2 descriptors. The 
external validation and statistical test conducted confirm the stability, robustness and the 
predictive power of the generated model and can be used for designing novel 4-
amidinoquinoline and 10-amidinobenzonaphthyridine derivatives with better antimalaria 
activities. 
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1. INTRODUCTION 

Malaria remains one of the most lives threatening 
infection worldwide with prevalent cases in African region 
(WHO 2018). The World Health Organization report (2018) on 
malaria revealed that in 2017 a projected two hundred and 
nineteen million malaria cases occurred worldwide where 5 
countries took almost half of the instances: 25% from Nigeria, 
11% from Democratic Republic of Congo, 5% from 
Mozambique and India and Uganda 4% each. And an estimate 
of 435 000 deaths from the disease worldwide was reported. 
Children below 5 years age are the most affected group 
responsible for 61% (266 000) of all the deaths globally in 
2017 (WHO 2018). Plasmodium, a protozoan of the genus is 
the causative organism of malaria infection which has 5 
species infecting humans namely, P. knowlesi, P. malariae, P. 
vivax, P. ovale and P. falciparum which is the most dangerous 
(Cohen et al., 2012). In an effort to find solution to this deadly 
illness, many researches are conducted by testing numerous 
molecular structures against Plasmodium falciparum strains to 
find out their most effective inhibitors. Quinoline moiety has 
been considered by medicinal chemists as one of the vital 
pharmacophores responsible for imparting antimalarial action 
(Mishra et al., 2014). Chloroquine, a 4-aminoquinoline has 
been used as the foremost antimalarial medicine since World 
War II (Krafts et al., 2012) but its therapeutic effect in fighting 
this fatal human illness is seriously hindered by the wide 
spread of chloroquine resistant P. falciparum (Uhlemann and 
Krishna, 2005); (Plowe, 2005). Mefloquine was usually used 
as a malaria prophylactic medicine (Palmer et al., 1993,) but its 
medicinal significance as an antimalarial drug is seriously 
compromised by toxicity and high cost. Hence, there remains a 
pressing need for new and affordable antimalarial drugs 
(Fidock, 2010). 

 Recently, 44 novel 4-amidinoquinoline (4-AMQ) and 
10-amidinobenzonaphthyridine (10-AMB) derivatives were 
synthesized and tested to have antimalarial activities against 
D6, W2 and C235 strains of P. falciparum (Ai et al., 2015). 
The new 4-AMQ derivatives differ from chloroquine mainly 
by replacement of the 4-amino group of chloroquine with 
amidine (4-NHCR=NH) functional group. Addition of amino 

group to the new 4-AMQ series could supply to the drug’s 
biological receptors a potential additional binding site, leading 
to a considerable change in pharmacological profiles from 
chloroquine and its congeners (Ai et al., 2015). Amidine being 
a stronger base than 4-aminoquinoline is an additional 
advantage to the novel 4-amidino analogs over chloroquine 
(Raczynska et al., 1998). Strong basicity of amidines may 
make the new amidines enhanced inhibitors of hemozoin 
formation and also results in more stable DNA intercalation, 
which are believed to account for chloroquine antimalarial 
action (Ai et al., 2015). 

Effective and vigorous methods for screening chemical 
databases against molecules with known activities/properties 
are needed so as to discover novel drug candidates (Tropsha, 
2010). Quantitative Structure-Activity Relationships (QSAR) 
modeling technique gives an efficient way for finding the 
model that connect structure of chemical compounds and their 
biological action in order to develop novel drug candidates. 
Generally, QSAR study can be defined as the method of 
generating empirical relationships (models) of the form 
Y i=k’(R1, R2,…,Rn)  by applying mathematical and statistical 
techniques, where Yi are biological activities/properties of 
molecules, R1, R2,…,Rn are molecular descriptors (structural 
properties) of compounds calculated or experimentally 
measured, and k’ is some empirically established mathematical 
transformation applied to descriptors to calculate the property 
values for all molecules (Tropsha, 2010). This research was 
aim at generating QSAR model predicting the activities of 4-
AMQ and 10-AMB derivatives as potent antimalaria agents.  

2. MATERIALS AND METHOD 

 2.1 Data collection 
 Forty-four compounds of 4-amidinoquinoline and 10-
amidinobenzonaphthyridine derivatives and their antimalarial 
activities against W2 strain of Plasmodium falciparum were 
obtained from the article (Ai et al., 2015) and used herein. The 
inhibitory antimalarial activities of the compounds reported as 
IC50 (nM) were transformed to pIC50 (pIC50 = -logIC50) for use 
in this study. Structures of the molecules and their activities 
were shown in Table 1. 
 

 
Table 1 - Molecular structures of 4-amidinoquinoline and 10-amidinobenzonaphthyridine derivatives and their 
antimalarial activities.  
S/N Compound Structures IC50 (nM) pIC50 

1 A1 

 

296 6.5287 

2 A2 

 

226 6.6459 
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Continued Table 1 

S/N Compound Structures IC50 (nM) pIC50 

3 A3 

 

98.3 7.0074 

4 A4 

 

455 6.342 

5 A5 

 

36 7.4437 

6 A6 

 

126 6.8996 

7 A7 

 

295 6.5302 

8 A8 

 

275 6.5607 

9 A9 

 

166 6.7799 

10 A10 

 

199 6.7011 

11 A11 

 

617 6.2097 
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Continued Table 1 

S/N Compound Structures IC50 (nM) pIC50 

12 A12 

 

193 6.7144 

13 A13 

 

91 7.041 

14 A14 

 

18.6 7.7305 

15 A15 

 

97 7.0132 

16 A16 

 

42 7.3768 

17 A17 

 

254 6.5952 

18 A18 

 

58.7 7.2314 

19 A19 

 

9.2 8.0362 

20 A20 

 

7.2 8.1427 
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Continued Table 1 

S/N Compound Structures IC50 (nM) pIC50 

21 A21 

 

15.7 7.8041 

22 A22 

 

2.9 8.5376 

23 A23 

 

203 6.6925 

24 B24 

 

121 6.9172 

25 A25 

 

76.8 7.1146 

26 A26 

 

121 6.9172 

27 A27 

 

16 7.7959 

28 A28 

 

383 6.4168 

29 C29 

 

3917 5.407 

30 D30 

 

100 7 
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Continued Table 1 

S/N Compound Structures IC50 (nM) pIC50 

31 D31 

 

41 7.3872 

32 D32 

 

24.9 7.6038 

33 D33 

 

8.8 8.0555 

34 D34 

 

9.7 8.0132 

35 D35 

 

3.96 8.4023 

36 E36 

 

6.1 8.2147 

37 D37 

 

1.98 8.7033 

38 D38 

 

5.6 8.2518 

39 D39 

 

3.3 8.4815 

40 D40 

 

20.6 7.6861 

41 D41 

 

6.6 8.1805 
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Continued Table 1 

S/N Compound Structures IC50 (nM) pIC50 

42 D42 

 

61 7.2147 

43 D43 

 

80.8 7.0926 

44 D44 

 

9.5 8.0223 

 
 

2.2 Geometric optimization 

 The compounds structures shown in Table 1 were 
drawn and optimized with chemdraw version 12.0.2 software 

(Li et al., 2004) and Spartan 14 Version 1.1.4 software (using 

B3LYP functional and 6-31G basis set) (Becke, 1993) 
respectively. 

2.3 Molecular descriptors calculation 

 1875 molecular descriptors of the optimized 
molecules of 4-amidinoquinoline and 10-
amidinobenzonaphthyridine derivatives were computed with 
PaDEL-Descriptor software version 2.20 (Yap, 2011). 

2.4 Normalization and data pretreatment 

 Using Eq. 1, the descriptors obtained were normalized 
so that each variable will have equal opportunity in influencing 
construction of a good model (Singh, 2013).  

� = �� − ���	��
� − ���	                                                                            (1) 

where X is the normalized descriptors, Xi is the descriptor’s 
value for each molecule, Xmin and Xmax are minimum and 
maximum value for each descriptor. In order to eliminate 
redundancy in the normalized data, it was then pretreated using 
Data Pretreatment software gotten from Drug Theoretical and 
Cheminformatics Laboratory (DTC Lab). 

2.5 Data Division  

 Kennard and Stone’s algorithm (Kennard and Stone, 
1969) was employed to divide the pretreated data into training 
set (70%) with which the model was generated and test set 
(30%) with which the model externally validated. This was 
achieved using Data Division software gotten from DTC Lab. 
 
 

 
2.6 Model Generation 

 Using Genetic Function Algorithm (GFA) technique 
in Material Studio software, regression analysis was carried out 
to build the model (using training set), where the dependent 
variable is the activities in pIC50 and the independent variable 
is the descriptors. 

2.7 Internal validation of the model generated 

 The model generated was assessed using Friedman 
formula (Friedman, 1991) defined as; 

��� = ���
(1 − ����� )�                                                                       (2) 

where LOF, SEE, c, d, p and M are the Friedman’s Lack of fit 
(a measure of fitness of a model), standard error of estimation, 
the number of terms in the model, user-defined smoothing 
parameter, total number of descriptors in the model and the 
number of compound in the training set respectively. 

SEE is defined as; 

  ��� =  �(��� ! � "#)$
%&'&(                                                                   (3) 

which is the same as the standard deviation of the model whose 
value if low a model is said to be good. 

 Correlation coefficient, R2 of a built model is another 
parameter considered, and the model is good if its value is 
close to 1.0.  It is defind as; 

�� = 1 − * �(+,�� − +�-�)�
�(+,�� −  +�.-	)�                                                    (4) 
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where Yprd, Yexp and Ymtrn are the predicted, experimental and 
mean experimental activities in the training set, respectively. 
The value of R2 is varies directly to the number of descriptors 
hence; the model stability is not reliable on it. Thus, to have a 
model that is reliable and stable, R2 is adjusted according to the 
expression: 
  �
�0� =
 (	&1)(23&�)	&�&1                                                                          (5) 

where p is the number of descriptors in the model and n 
number of compounds used in training set. 

The cross-validation coefficient, Q2
cv expressed as: 

��5� = 1 − �(+�-� − +,��)�
�(+,�� − +�.-	)�                                                       (6) 

where Yprd, Yexp and Ymtrn  are respectively the predicted, 
experimental and average experimental activity in the training 
set. 

2.8 External Validation of the model generated 

  The generated model was assessed (using test set) for 
external validation by the value of R2

test expressed as; 
 

�.,7.� = 1 − �(+�-� −  +,��)�
(+,�� − +�.-	)�                                                       (7) 

where Yprd and Yexp are respectively the predicted and 
experimental activities of the test set and Ymtrn the mean 
training set experimental activity. The nearer the value is to 1, 
the better the model built (Tropsha et al., 2003). 

2.9 Y-Randomization test 

 Random Multi-Linear regression models are 
generated (using training set) in Y-randomization test whose 
R2 and Q2 values have to be low for the QSAR model to be 
robust (Tropsha et al., 2003). Coefficient of determination 
cR2

p, whose value has to be higher than 0.5 for the model to 
pass the test is also calculated in the Y-randomization test and 
is expressed as; 

9��� = � : (�� −  �-�)�                                                                  (8) 

where R is the correlation coefficient for Y-randomization and 
R2

r is the average ‘R’ of the random models. 

2.10 Applicability domain of the generated model 

 Leverage (hi) method was used in describing the 
applicability domain of the built models (Veerasamy et al., 
2011) and for a chemical compound is expressed as; 

ℎ� =  ��(�=�)&1�>=                                                                        (9) 

where Xi is matrix of training compounds i. X is the n x k 
descriptor matrix of the training set compound and XT is the X  
transpose matrix used to generate the model. The warning 
leverage, h* is the maximum value for X and is expressed as; 

ℎ∗ =  3(@ + 1)B                                                                               (10) 

2.11 Quality assurance of the generated model 

 Internal and external validations parameters presented 
in Table 2 give the minimum required values for a QSAR 
model to be predictable and reliable (Veerasamy et al., 2011). 

Table 2 - The minimum required values for a QSAR model 
to be generally acceptable. 
Symbol Name Value 
R2 Coefficient of determination ≥0.6 
P(95%) Confidence interval at 95% confidence 

level 
<0.05 

Q2
cv Cross validation coefficient <0.5 

R2 - Q2
cv Difference between R2 and Q2

cv ≤0.3 
Next. test set Minimum number of external test set ≥5 
cR2

p Coefficient of determination for Y-
randomization 

>0.5 

3. RESULTS AND DISCUSSION 

 QSAR models ware built with genetic function 
algorithm (GFA) of material studio software to study how the 
chemical structure of 4-amidinoquinoline and 10-
amidinobenzonaphthyridine correlate with their biological 
activities as potent antimalaria. Four QSAR models ware 
generated out of which one model was selected for its 
statistical significance and reported herein as follow: 

pIC 50 = 14.810925996 * AATSC1s  
            + 6.681327289 * GATS6c  
             - 9.114874822 * GATS6e  
            + 0.123280114 * C2SP2  
            - 0.143459063 * TDB10s  
            - 0.175971323 * RDF30v  
            + 10.613625719 

Validation parameters of the model are presented in Table 3 
which is in agreement with the minimum required values 
presented in Table 2. 

Table 3 - Validation parameters for the selected model 
S/N Parameter Value 
1 Friedman LOF 0.20237800 
2 R2

train 0.92883400 
3 Adjusted �-squared 0.91026900 
4 Cross-validated �-squared (�2

cv) 0.89242000 
5 Significant regression Yes 
6 Significance-of-regression �-value 50.03138900 
7 Critical SOR �-value (95%) 2.53977400 
8 Replicate points 1 
9 Experimental error computed 0.38471400 
10 Lack-of-fit points 22 
11 Minimum experimental. error for 

nonsignificant LOF (95%) 
0.00000000 

12 R2
test 0.818799 
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The model comprises of Autocorrelation (AATSC1s, 
GATS6c and GATS6e), Topological (C2SP2 and TDB10s) 
and Radial Distribution Function (RDF30v) descriptors. 
AATSC1s is a 2D Centered Moreau-Broto autocorrelation of 
lag 1/ weighted by intrinsic state descriptor based on spatial 
dependent autocorrelation function measuring the relationship 
strenght between atomic or molecular properties and space 
separating them (lag). GATS6c and GATS6e are 2D Geary 
autocorrelation of lag - 6/ weighted by gasteiger charge and by 
atomic Sanderson electronegativities respectively. In these 
descriptors, the Geary coefficients are any physico-chemical 
property calculated for each atom of the molecule, which in the 
case of GATS6c and GATS6e are gasteiger charge and atomic 
Sanderson electronegativities respectively. C2SP2 is 2D 
carbon type topological descriptors based on Sp2 Carbon bound 
to 2 other Carbons. TDB10s is 3D topological distance-based 
autocorrelation – lag 10/ weighted by 1-state and RDF30v is 

3D Radial distribution function – 030/ weighted by van der 
Waals volumes. 

 Table 4 shows the experimental and predicted 
activities and residual values of 4-amidinoquinoline and 10-
amidinobenzonaphthyridine derivatives as potent Plasmodium 
falciparum inhibitors. The low residual values of experimental 
and predicted activity of the compounds indicate high 
predictability of the model built. 

 

 

 

 

 
 

Table 4 - Experimental and Predicted activities for the compounds with residual. 
Compounds Experimental activity (pIC50) Predicted activity (pIC50) Residual 

A1a 6.528708 6.779761 0.251053 
A2 6.645892 6.730196 -0.0843 
A3 7.007446 7.098008 -0.09056 
A4 6.341989 6.496949 -0.15496 
A5 7.443697 6.922351 0.521346 
A6 6.899629 6.922351 -0.02272 
A7 6.530178 6.53576 -0.00558 
A8 6.560667 6.489362 0.071306 
A9a 6.779892 6.642563 -0.13733 
A10 6.701147 6.909541 -0.20839 
A11 6.209715 6.134458 0.075257 
A12 6.714443 6.438233 0.27621 
A13 7.040959 7.211756 -0.1708 
A14a 7.730487 7.219964 -0.51052 
A15a 7.013228 7.420503 0.407275 
A16 7.376751 7.21833 0.15842 
A17 6.595166 6.692652 -0.09749 
A18 7.231362 7.090104 0.141258 
A19 8.036212 8.016864 0.019348 
A20a 8.142668 7.944233 -0.19843 
A21 7.8041 7.867564 -0.06346 
A22 8.537602 8.483321 0.054281 
A23 6.692504 6.992115 -0.29961 
B24 6.917215 6.903046 0.014169 
A25a 7.114639 6.981649 -0.13299 
A26 6.917215 7.128248 -0.21103 
A27a 7.79588 7.220324 -0.57556 
A28 6.416801 6.692684 -0.27588 
C29 5.407046 5.296375 0.110671 
D30 7 6.936253 0.063747 
D31 7.387216 7.455029 -0.06781 
D32a 7.603801 7.731471 0.127671 
D33a 8.055517 7.915156 -0.14036 
D34 8.013228 7.870129 0.1431 
D35a 8.402305 8.091832 -0.31047 
E36a 8.21467 7.718828 -0.49584 
D37a 8.703335 7.892822 -0.81051 
D38a 8.251812 8.182895 -0.06892 
D39 8.481486 8.445233 0.036254 
D40 7.686133 7.755245 -0.06911 
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D41a 8.180456 8.591661 0.411205 
D42 7.21467 7.138944 0.075726 
D43 7.092589 7.379998 -0.28741 
D44 8.022276 7.674236 0.34804 

aTest set
 Table 5 presents the Pearson’s correlation matrix, 
Variance Inflation Factor and Mean Effect of the six 
descriptors in the model. The correlation matrix shows no 
important inter-correlation among the descriptors in the built 
model except for GATS6c and GATS6e. The correlation 
between GATS6c and GATS6e is indicated by the values of 
Variance Inflation Factor of the two descriptors which are 
greater than 4 but less than 10. Hence the descriptors in the 
built model were good enough. The positive sign of the mean 

effect values of the descriptors GATS6e, TDB10s and RDF30v 
indicates that increase in these descriptors increase the 
activities of the molecules while the magnitudes indicate the 
extent of their respective influences. The negative sign of the 
mean effect values of the descriptors AATSC1s, GATS6c and 
C2SP2 indicates that increase in these descriptors decrease the 
activities of the molecules while the magnitudes indicate the 
extent of their respective influences.  

 
Table 5 - Pearson’s correlation, Variance Inflation Factor (VIF) and Mean Effect (ME) of descriptors used in the  model. 
 Inter-correlation 

VIF ME 
Descriptor AATSC1s GATS6c GATS6e C2SP2 TDB10s RDF30v 

AATSC1s 1      1.3484 -0.0209 

GATS6c -0.01086 1     9.5210 -1.6362 

GATS6e 0.221962 0.87143 1    7.6607 1.9844 

C2SP2 -0.14295 0.498492 0.245009 1   2.5457 -0.3366 

TDB10s 0.252823 -0.11211 -0.01111 0.152104 1  1.6508 0.7158 

RDF30v 0.031 0.145263 0.152462 0.302408 -0.30734 1 1.5174 0.2935 

 
 Y- Randomization result shown in table 6 confirms 
that the QSAR model built is reliable, robust and stable for 
the low R2 and several trials Q2 values. The result also 
shows that the model is good and not gotten by chance for 
the value of cR2p (>0.5). 

Table 6 - +- Randomization test result. 
Model R R2 Q2 

Original 0.96376 0.928834 0.89242 

Random 1 0.303553 0.092144 -0.43608 

Random 2 0.434119 0.18846 -0.65337 

Random 3 0.42922 0.18423 -0.33598 

Random 4 0.294643 0.086814 -0.66419 

Random 5 0.462415 0.213827 -0.50357 

Random 6 0.48295 0.233241 -0.47657 

Random 7 0.487534 0.237689 -0.26116 

Random 8 0.405283 0.164254 -0.51102 

Random 9 0.412277 0.169972 -0.31391 

Random 10 0.624219 0.389649 0.040793 

    
Random Models Parameters   
Average r : 0.433621   
Average r2 : 0.196028   
Average Q2 : -0.41151   
cRp2 : 0.82951   

 Fig. 1 present the Plot of predicted activity against 
experimental activity of both training and test set. Linearity 
of this plot indicates the high predictive power of the built 
model. Plot of standardized residual against experimental 
activity presented in Fig. 2 shows the dispersal of 
standardized residual values on both sides of zero, hence 
there was no systematic error in the generated model (Jalali 
et al., 2004). 

  

Fig. 1 - Plot of predicted activity against experimental 
activity of both training and test set. 

 

Fig. 2 - Plot of Standardized residual activity against 
experimental activity. 
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 Fig. 3 shows the Williams plot of the standardized 
residuals against the leverages. It is clear that all compounds 
are within the applicability domain except for two 
influential compounds (i.e., compounds A1 and A14) whose 
leverage values are greater than the warning leverage (ℎ∗ = 
0.70). This may be due to their molecular structure as it 
differs from that of others. 

 

Fig. 5 - Plot of the standardized residuals against the 
leverages (Williams plot). 

4. CONCLUSION 

 QSAR study of 44 compounds of 4-
amidinoquinoline and 10-amidinobenzonaphthyridine 
derivatives as potent antimalaria was performed by 
employing Genetic Function Approximation (GFA) 
technique in Material Studio software to generate four 
models. The best model out the four models generated has 
internal and external R2 values of 0.92883400 and 0.818799 
respectively was found to be influence by AATSC1s, 
GATS6c, GATS6e, C2SP2, TDB10s and RDF30v 
descriptors. GATS6e, TDB10s and RDF30v were found to 
affect the model positively while AATSC1s, GATS6c and 
C2SP2 negatively. The model was validated to be stable, 
reliable and robust and can be employed in designing new 
4-amidinoquinoline and 10-amidinobenzonaphthyridine 
derivatives with better potency to inhibit Plasmodium 
falciparum. 
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