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The toxicity and high resistance to the commercially sold breast-cancer drugs have become 
more alarming and the demand to produce new and less toxic breast-cancer drugs arises. In 
silico studies was carried out on some quinoline derivatives to investigate their reported 
activities against breast cancer and thereby generate a model with a better activity against 
breast cancer. The chemical structures of the compounds were optimized using Spartan 
software at Density Functional Theory (DFT) level, utilizing the B3LYP/ 6-31G* basis set. 
Four QSAR models were generated using Multi-Linear Regression (MLR) and Genetic 
Function Approximation (GFA) method. Equation one was chosen as the best model based on 
the validation parameters. The validation parameters was found to be statistically significant 
with square correlation coefficient (R2) of 0.9853, adjusted square correlation coefficient 
(�����) of 0.9816, cross validation coefficient (����) of 0.9727 and an external correlation 
coefficient square (�	
�	�) of 0.6649 was used to validate the model. The built model was a 
good and robust one for it passed the minimum requirement for generating a QSAR model. 
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1. INTRODUCTION 

Cancer is a term used to describe the abnormal or irregular 
growths that occur in the cell. It follows the circulatory diseases 
when it comes to health issues that take lives. The World Health 
Organization (WHO) forecast that if a new preventive measure 
is not adapted, the world may experience about 15 million death 
case by the year 2020 (Frankish, 2003). 
 
Breast cancer is an irregular growth of the breast cell. It is found 
mostly in women but in some cases, men can also get it. It is the 
commonest cancer amongst women; about 1.4 million new 
breast cancer cases were reported in 2008 to have been 
diagnosed. Countries with low income were reported to have 
about 60% death cases resulting from breast cancer (Ferlay et 
al., 2008). The survival rate of breast cancer cases differs from 
country to country. An estimated 5 years survival case show that 
only 40% can survive in low income countries and 60% in high 
income countries (Coleman et al., 2008). 
 
Quinoline is an aromatic heterocyclic compound having a 
double ring structure with a fused benzene ring at the two 
adjacent carbon atoms. It is also referred to as benzo pyridine, 
benzo[b]pyridine, 1-benzazine. It is a hygroscopic yellowish 
oily liquid that is slightly soluble in water, alcohol, ether and 
many other organic solvents (Ferlin et al., 2005). Quinoline 
derivatives are widely used in the field of medicine and 
medicinal chemistry because of their anti-malarial, anti-
microbial, antitumor, antifungal, antihypertensive, anti-HIV, 
analgesics and anti-inflammatory activities. Quinoline 
derivatives represent a large number of anti-proliferative agents 
exhibiting cytotoxicity through DNA intercalation, causing 
interference in the replication process (Gasparotto et al., 2006). 
For the treatment of breast cancer, commercially sold drugs like 
fulvestrant, lapatinib, eribulin mesylate, pertuzumab, 
everolimus, doxorubicin and other numerous agents have been 
approved by the Food Drugs and Administration (FDA) for sub-
types treatment. Efforts have been put in place to develop a new 
and more effective cancer drugs through synthesis and structure 
modification.  
 
QSAR is a computational technique that shows mathematically 
the relationship between the inhibitory activity of molecules and 
their chemical structures. It is the commonly used computational 
technique for predicting the physicochemical properties of 
molecules (Wong et al., 2014). QSAR method save cost and 
resources when developing or designing new drugs and other 
related substances like fungicides and herbicides (Larif et al., 
2013). The aim of this research was to build a QSAR model with 
improved activity against breast cancer from quinoline 
derivatives that would give the pharmacologist and pharmacist 
an insight when to in the design of new breast cancer drugs. 
 
2. MATERIALS AND METHOD 
2.1. Data collection: 
The quinoline derivatives used in this study were collected from 
the literature. 
 
2.2. Biological Activities (pIC50) 
          The biological activities of the compounds were measured 
and reported in the literature as IC50, it was then converted to 
logarithm unit (pIC50) using the equation 1 below for simplicity 

and avoidance of negative IC50 value. The IUPAC name of the 
compounds and their biological activities is presented in Table 
1. 
  
pIC50 = -log (IC50×10-6)                                                        (1)                                                                                                           
 

Table 1: Compounds names and their activities. 
S/N IUPAC name of compounds Activities 

/μmolL 1 
IC50 pIC50 

1 2-cyano-3-phenyl-N-(quinolin-3-yl) acrylamide 79.20 4.1013 
2 2-cyano-N-(quinolin-3-yl)-3-p-tolylacrylamide 74.40 4.1284 
3 2-cyano-3-(4-fluorophenyl-N-(quinolin-3-yl) 

acrylamide 
40.00 4.3979 

4 2-cyano-5-phenyl- N-(quinolin-3-yl) penta-2,4-
dienamide 

63.60 4.1965 

5 3-(2-chlorophenyl)-2-cyano-N-(quinolin-3-yl) 
acrylamide 

53.50 4.2716 

6 3-(benzo[d] [1,3] dioxol-5-yl)-2cyano-N-
(quinolin-3-yl) acrylamide 

57.10 4.2434 

7 2-cyano-3-(3-nitrophenyl)-N-(quinolin-3-yl) 
acrylamide 

65.20 4.1857 

8 2-cyano-3-(4-nitrophenyl)-N-(quinolin-3-yl) 
acrylamide 

63.00 4.2007 

9 2-cyano-3-(4-hydroxy-3-methoxyphenyl)-N-
(quinolin-3-yl) acrylamide 

29.80 4.5258 

10 2-cyano-3-(3,4-dimethoxyphenyl)-N-(quinolin-
3yl) acrylamide 

64.60 4.1898 

11 2-cyano-N-(quinolin-3-yl)-3-(2,3,4-
trimethoxyphenyl) acrylamide 

49.80 4.3028 

12 2-cyano-3-(2,4-dichorophenyl)-N-(quinolin-3-
yl) acrylamide 

57.60 4.2396 

13 2-cyano-5-(4-(dimethyl amino) phenyl)-N-
(quinolin-3-yl) penta-2,4-dienamide 

40.40 4.3936 

14 2-cyano-3-(2methoxynaphthalen-1-yl)-N-
(quinolin-3-yl) acrylamide 

57.50 4.2403 

18 7-(trifluoromethyl)-N-(3,4,5-trimethoxyphenyl) 
quinolin-4-amine 

9.380 5.0278 

19 N-(3-methyl bicyclo[3.3.1]nonan-3-yl)-7-
(trifluoromethyl)quinolin-4-amine 

24.10 4.6180 

20 7-chloro-N-(4-morpholinophenyl) quinolin-4-
amine 

31.50 4.5017 

21 N-(4-morpholinophenyl)-7-(trifluoromethyl) 
quinolin-4amine 

23.30 4.6326 

22 5-(7-(trifluoromethyl) quinolin-4-ylamino) 
pyrimidin-2,4-(1H,3H)-dione 

21.40 4.6696 

23 1,3-dimethyl-6-(7-(trifluoromethyl) quinolin-4-
ylamino) pyrimidin-2,4-(1H,3H)-dione 

23.30 4.6326 

24 N-(benzo[d] [1,3] dioxol-5-ylmethyl)-7-
chloroquinolin-4-amine 

21.10 4.6757 

25 N-(benzo[d] [1,3] dioxol-5-ylmethyl)-7-
(trifluoromethyl)-quinolin-4-amine 

26.20 4.5817 

26 N-(5,6-dimethyl-1,2,4-triazin-3-yl)-7-
(trifluoromethyl)-quinolin-4-amine 

21.80 4.6615 

27 N-(7-(trifluoromethyl)-quinolin-4-yl)-quinolin-
3-amine 

14.20 4.8477 

28 2-methyl-N-(7-trifluoromethyl) quinolin-4-yl)-
quinolin-3-amine 

16.30 4.7878 

29 N-(4-(4-aminophenylsulfonyl) phenyl)-7-
chloroquinolin-4-amine 

18.80 4.7258 

30 N-(4-(4-aminophenylsulfonyl) phenyl-7-
(trifluoromethyl)-quinolin-4-amine 

23.50 4.6289 

31 N,N’-(4,4’-sulfonylbis(4,1-phenylene)bis(7-
chloroquinolin-4-amine) 

23.20 4.6345 

32 N,N’-(4,4’sulfonylbis(4,1-phenylene)bis(7-
(trifluoromethyl)-quinolin-4-amine) 

24.00 4.6198 

33 7-Chloro-4-isothiocyanatoquinoline 22.40 4.6498 
34 N-(4-(4-aminophenylsulfonyl)phenyl)-N-(7-

chloroquinolin-4-yl)-carbamimiodothioic acid 
22.70 4.6440 

 
2.3 Data optimization 
2D structures of the compounds were drawn with ChemDraw 
software. The structures were imported into Spartan 14 V1.1.4 
Wave Function programming software to obtain the spatial 
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conformation structures. The software minimizes the energy of 
the molecules by optimization at Density Functional Theory 
(DFT) level, utilizing the (B3LYP/6-31G*) basis set. The 
optimized molecules in Spartan format were then converted to 
an SD format and were saved, this is because PaDEL-Descriptor 
software only recognizes SD file format. The saved SD file 
format was also imported into the PaDEL descriptor software 
V2.20 to calculate the molecular descriptors. 
 
2.4 Molecular Descriptor Calculation and data pre-
treatment 
The chemical characteristic of a compound is best described by 
its descriptors in the form of numerical values. The PaDEL 
descriptor software V2.20 was therefore used to calculate the 
descriptors of the compounds and a total number of 931 
descriptors were calculated. 
 
2.5 Data Pre-treatment and division 
The data was first normalized to give the descriptors equal 
chance of occurrence using equation 2, after which the data was 
pre-treated (Singh 2013). 

 X = �����
�������

                                                                     (2)                                                                                                                  

 
Where Xi is the value of each descriptor,  ����  and ���� is the 
maximum and minimum value of the descriptors in each column 
�. 
 
The data pre-treatment was carried out using the data pre-
treatment software in the DTC Lab, this was done solely to 
remove any redundant descriptor and none informative 
descriptors (Shola et al., 2018). The pre-treated data set was then 
divided into two sub-sets namely, training and test set by 
employing Kennard and Stone algorithm method (Kennard et 
al., 1969). The training set contains 70% of the total compounds 
and was used to build the model while the remaining compounds 
(test set) were used to validate the built model.  
 
2.6. Internal Validation of Model. 
The internal validation of the model was carried out with the 
Materials Studio V.8.0 software, employing the Genetic 
Function Approximation (GFA) method. The models were 
estimated using the LOF (Friedman 1991) which is expressed in 
equation 3: 
 

LOF = 
���

(���� ∗"
# )%                                                                           (3) 

 
Where SSE is the sum of squares of errors, C is the number of 
terms in the model, d is a user-defined smoothing parameter, P 
is the total number of descriptors in the model, and M is the 
amount of data in the training set. SSE is defined by equation 4. 
 

SSE = '(()�*�(*+))%
,�-��                                                                  (4)                                                                                                                 

 
2.6.1 Correlation coefficient (R2) and adjusted correlation 
coefficient (�����). 
The correlation coefficient square (R2) is the plot of predicted 
activity against the experimental activity which shows the 
potency of the model and the efficiency of the selected 
descriptors. A close value of R2 to 1.0 indicates a good model. 
This can be calculated as follows. 
  

R2 = 1 - [
∑(()�*�(*+) )%

∑(()�*�(/0+�����1)%]                                                     (5)                                                                                                    

 
Where  2
�3 ,  234
� and  25	4�����6 , are respectively the 
experimental activity, the predicted activity, and the mean 
experimental activity of the compounds in the training set. The 
R2 value alone cannot be used to affirm the goodness of the 
model, so R2 was adjusted for the number of variables in the 
model. The adjusted R2 is given as: 
 

�����  = 
7%�8(���)

��-9�                                                                          (6)                                                                                        

 
Where k is the number of independent variables in the model 
and n is the number of descriptors. 
 
The QSAR equation used to predict the biological activity of the 
compounds was determined using the leave-one-out cross 
validation equation (���� ), given as: 
 

 ����  = 1 - [
∑(()�*�(*+) )%

∑(()�*�(/0+�����1)%]                                               (7)                                                                                                    

 
Where 2
�3 , 234
�  and  25	4�����6 , are respectively the 
experimental activity, the predicted activity, and the mean 
experimental activity of the training set. 
 
2.7. External validation of the model. 
The external validation of the model was carried out on the test 
set to ensure the selected descriptors are appropriate and to also 
confirm the model’s robustness. This can be expressed using 
equation 8. 
 

 �	
�	� = 1 - 
∑((*+) 0);0�()�*0);0)%

∑((*+) 0);0�(/0+�����1)%                                            (8) 

 
Where 234
�0);0 , 2
�30);0  is predicted, experimental activity of 
the test respectively, and 2/	4�����6  is the mean activity of the 
training set. A good and robust model will have �	
�	�  value ≥ 
0.6. 
 
2.8. Y-randomization test. 
The Y-Randomization test is an external validation test 
performed on the training set to confirm the strength of the built 
model (Tropsha et al., 2003). For a QSAR model to pass 2-
Randomization test the <�3� value must be more than 0.5. The 
below equation is used for the calculation. 
 
 <�3� = �[�� − (��)�]2                                                        (9)                                                                                                
 
2.9. Variance Inflation Factor (VIF). 
The VIF is a measure of the multi-collinearity among the 
descriptors used in the model and is expressed as: 
 

VIF = 
�

��7%                                                                            (10) 

 
R2 is the multiple regression correlation coefficients of the 
variables within the model. If the VIF value falls in the range of 
1-5, the model is good and acceptable, if the value is 1, it shows 
no collinearity among the descriptors and if is above 10, it shows 
that the model is not good and cannot not be accepted.  
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2.10. Applicability Domain. 
Applicability domain was performed on the compounds to 
detect an outlier and influential molecules. The leverage 
approach was employed to describe the applicability domain of 
the QSAR model (Tropsha et al., 2003). Leverage of a given 
chemical compound is defined as follows: 
 
?�  = ��(�@�)����@                                                                 (11) 
 
?� is the leverage of each compounds, �� is the descriptor row-
vector of the query compound A, and � is the (m × n) descriptor 
matrix of the compounds in the training set that were used to 
build the model. The warning leverage (?∗) is used to assess the 
leverages, molecule(s) with value greater than the leverage value 
is said to be an influential molecule. This was calculated using 
equation 12. 
 

?∗ = 3 (89�)
�                                                                                     (12) 

 
Where n is the total number of training set compounds and k is 
the number of descriptors in the model. The Williams plot is a 
plot of standardized residual against leverage employed to 
elucidate the relevance area of the model in terms of chemical 
space. Data is said to be an outlier if the standardized cross-
validation residual value generated by the model is greater than 
±3. 
 
2.11. Mean Effect of the model (ME). 
The mean effect was carried out on the training set to know the 
relative importance of each descriptors in the model built. This 
is defined as follows: 
 

ME = 
BC ∑ DC��

∑ (BC ∑ DC�� )�C
                                                                  (13)                                                                                                       

 
E� is the coefficient of the descriptor j in the model, F�  is the 
value of each descriptors in the data matrix for each molecule in 
the training set, m and n are respectively the number of 
descriptors that appears in the model and the number of 
molecules in the training set (Minovski et al., 2013). 
 
2.12. Strength of the Model. 
The strength of the built model was evaluated using both the 
internal and external validation parameters. Table 2 below show 
clearly the standard validation parameters for a generally 
acceptable QSAR model (Veerasamy et al., 2011). 
 
Table 2. Standard Validation Parameters for a good QASR 
model. 

Validation 
parameters 

Meaning Values 

�� Coefficient of determination ≥ 0.6 
KLM% Confidence interval at 95% confidence 

level 
<0.06 

���� Cross-validation coefficient > 0.5 
�� − ���� Difference between ��and ���� ≤ 0.3 

R
�	.  	
�	 �
	. Minimum number of external test sets ≥ 5 

�	
�	� Coefficient of determination for external 
test set 

≥ 0.06 

<�3� Coefficient of determination for 2-
randomization 

> 0.5 

 
 

3. RESULTS AND DISCUSSION 
Thirty-one compounds were subjected to an in silico studies to 
develop a QSAR model with a better activity against breast 
cancer. The compounds were drawn using ChemDraw and 
optimized using Spartan software 14.1.14 version to obtain the 
three-dimensional spatial conformers, after which the molecular 
descriptors were calculated with PaDEL descriptor software 
V.2.20 and 931 descriptors were calculated. The data were pre-
treated to remove those with repeated or same activity and those 
with empty columns. They were then divided into training and 
test set. 70% of the total compounds (2, 4, 5, 8 10, 12,13, 14, 
,19, 20, 21, 24, 25, 26, 27, ,28, 30, 32, 33, 34) make up the 
training set while the remaining 30% (1, 3, 6, 7, 9, 11, 18, 23, 
29, 31) were the test set. The model was built with the training 
set utilizing the GFA-MLR from the material studio Software, 
the model was validated with the test set. Four models were 
generated and the first model was chosen as the optimum model 
because of its high potency, affinity, efficacy and selectivity 
(PAES). Table 3 shows the four equations and their definitions. 
 
Table 3: Models equations and descriptors. 

S/N Equations Definitions 
1 pIC50 = 

0.071169725*X505+0.009132493*X751-
0.037066466*X758-
0.023009609*X845+4.933312035 

X505 : SL: minHBint2 
X751 : ABX: WPSA3 
X758 : ACE: RNCS 
X845 : AFN: RDF85e 

2 pIC50 = -
0.075172920*X505+0.033710209*X58-
0.039221060*X758- 
0.023180487*X845+4.883406055 

X505 : SL: minHBint2 
X584:VM:ETAEta_F_L 
X758 : ACE: RNCS 
X845 : AFN: RDF85e 

3 pIC50 = 
0.072027698*X505+0.006497927*X580-
0.038714612*X758- 
0.024063116*X845+4.955391798 

X505 : SL: minHBint2 
X580: VI: ETA_Eta_F 
X758 : ACE: RNCS 
X845 : AFN: RDF85e 

4 pIC50 = -
0.070392188*X505+0.000127795*X741-
0.039846693*X758- 
0.025338322*X845+4.992974866 

X505 : SL: minHBint2 
X741 : ABN : DPSA-2 
X758 : ACE : RNCS 
X845 : AFN : RDF85e 

 
Model one was found to have pIC50 = -0.071169725* 
minHBint2  + 0.009132493* - WPSA-3 0.037066466 * RNCS 
- 0.023009609 * RDF85e + 4.933312035. The descriptors used 
in the model were minHBint2 which is a 2D structure and is 
Minimum E-State descriptors of strength for potential Hydrogen 
Bonds of path length 2, WPSA-3 is a PPSA-3 * total molecular 
surface area / 1000, RNCS is a 3D Relative negative charge 
surface area -- most negative surface area * RNCG and RDF85e 
which is also a 3D molecule which means Radial distribution 
function - 085 / weighted by relative Sanderson electro-
negativities. The validation parameters presented in table 4 
passed the recommendations for building a good QSAR model 
when compared to the standard validation parameters; this 
indicate how potent and robust the model is. 
 
Table 4: Validation parameters (VP) 

Validation 
parameter 

 Equations   
1 2 3 4 

Friedman LOF 0.0042 0.0045 0.0047 0.0050 
R-squared (��) 0.9853 0.9842 0.9835 0.9827 
Adjusted R-
squared (�����) 

0.9816 0.9803 0.9793 0.9784 

Cross validated R-
squared (����) 

0.9727 0.9719 0.9708 0.9688 

Significance-of-
regression F-value 

268.4242 249.5214 237.7687 227.6479 

Min exp. error for 
none-significant 
LOF (95%) 

0.0238 0.0247 0.0253 0.0258 
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Table 5: Y- Randomization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Y-randomization result presented in table 5 was a test 
conducted on the training set to show the robustness of the 
model. The low values of both R2 (0.2258) and Q2 (-0.3757) for 
several trials affirm that the built model is stable, robust and 
reliable. While the <�3� value (0.8780) greater than 0.5 confirm 
that the built model is powerful and was not deduce by chance. 
Other statistical analyses carried out on the model’s descriptors 
are Pearson’s correlation (PC), mean effect (ME) and the 
Variance inflation Factor (VIF). The PC shows the inter-
correlation between each descriptor, the ME indicates the 
relative importance of each descriptor on the built model while 
the VIF shows that the model is strong and statistically 
acceptable. There was no inter-correlation between the 
descriptors because all the paired values were less than 1.0. The 
positive and negative value of the mean effect shows the 
strength of the model based on their magnitude and signs. Table 
6 present this analysis.  
 
Table 6: Pearson’s correlation matrix, VIF and mean effect for 
the QSAR model descriptors. 

Descriptors Inter-correlation VIF Mean 
Effect 

minHBint2 WPSA-3 RNCS RDF85e 

minHBint2 1 -0.0748 0.1683 -0.1786 1.0510 0.3973 

WPSA-3 -0.0748 1 -
0.5931 

0.8074 2.9136 -0.4453 

RNCS 0.1683 -0.5931 1 0.1683 2.2078 0.3013 

RDF85e -0.1786 0.8074 0.1683 1 4.1810 0.7467 

 
The univariant statistical analysis presented in table 7 below 
shows that there is no significant difference in the mean, 
standard deviation and median values of the compounds. This 
indicates that the inhibitory activity of both training and test set 
are similar when compared. The insignificant difference in the 
range values of the two set indicates that the inhibitory activity 
of the two set are similar. The maximum values (4.8477 -5.0278) 
and the minimum values (4.1284 - 4.1013) of the training and 
test set respectively confirmed that the compounds are within 

the same range and the inhibitory activity of the compounds are 
interpolative. 
 
Table7: Statistical analysis.  

 
Table 8 and 9 illustrate the low residual activity values for both 
training and test set, this confirmed the high predictive power of 
the built model. 
 
Table 8: Experimental, predicted, residual and standard 
residual activity for training set. 

S/N Experimental     
activity  

Predicted 
activity  

Residual 
activity  

Standardized 
Residual 

2 4.1284 4.1612 -0.0328 -1.1999 

10 4.1880 4.1923 -0.0025 -0.0917 

4 4.1965 4.2109 -0.0144 -0.5256 

12 4.2396 4.2270 0.0126 0.4597 

24 4.6757 4.6928 -0.0171 -0.6259 

5 4.2716 4.2742 -0.0026 -0.0945 

8 4.2007 4.1803 0.0204 0.7458 

19 4.6180 4.6773 -0.0593 -2.1731 

20 4.5017 4.5122 -0.0106 -0.3866 

21 4.6326 4.5946 0.0381 1.3935 

22 4.6696 4.6617 0.0079 0,2891 

13 4.3936 4.4191 -0.0254 -0.9315 

14 4.2403 4.1992 0.0412 1.5071 

26 4.6615 4.6923 -0.0307 -1.1248 

27 4.8477 4.8075 0.0402 1.4728 

30 4.6289 4.5907 0.0382 1.3996 

32 4.6198 4.6173 0.0025 0.0907 

33 4.6498 4.6498 -0.0001 -0.0025 

34 4.6440 4.6391 0.0049 0.1789 

25 4.5817 4.6111 -0.0294 -1.0749 

28 4.7878 4.7689 0.0190 0.6943 

 
  

Model R R2 Q2 

Original 0.9926 0.9853 0.9727 

Model 1 0.3946 0.1557 -0.4277 

Model 2 0.6179 0.3818 -0.2281 

Model 3 0.5382 0.2895 -0.4008 

Model 4 0.6202 0.3846 -0.1050 

Model 5 0.4260 0.1815 0.4988 

Model 6 0.6586 0.4338 -0.1035 

Model 7 0.4171 0.1740 -0.3489 

Model 8 0.4058 0.1647 0.3681 

Model 9 0.2344 0.0550 -0.5589 

Model10 0.1926 0.0371 -0.7175 

Average randomized model 
Average 

R: 
0.4505  

 
Average 

R2: 
0.2258 

Average 
Q2: 

-0.3757 

<�3� ∶ 0.8780 

Statistical Analysis Activity  
 Training set Test set 

Number of compounds 21 10 
Confidence level (95%) 0.1026 0.2040 
Mean 4.4943 4,4772 
Median 4.6180 4.4619 
Maximum 4.8477 5.0278 
Minimum 4.1284 4.1013 
Kurtosis -1.3909 0.1187 
Range 0.7193 0.9265 
Skewness -1.3909 0.1187 

Standard deviation 0.2254 0.2852 

Sample variance 0.0508 0.0814 
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Table 9: Experimental, predicted, residual and standard residual 
activity for the test set. 

 
Figures 1 and 2 display the plot of experimental activity against 
the predicted activity for both training and test set. The two plots 
have R2 value greater than 0.6 which indicate a strong and 
reliable model. Figure 3 display the plot of standardize residual 
against the experimental activities, all the compounds were 
found to be within the range value of ±2, this confirmed the 
strength and robustness of the model.  
 

 
Figure 1 - Plot of experimental activity against predicted 

activity for training set. 

 
Figure 2 - Plot of experimental activity against predicted 
activity for test set. 
 
 
The Williams plot in figure 4 above is a plot of standardized 
residual against leverage to know the influential compounds and 

outliers in the model. The result shows that all the compounds 
were within the limits square of ±3 except compounds 18, 23 
and 31 from the test set that exceeded the calculated warning 
leverage (?∗ = 0.7). This could be attributed to the difference in 
the chemical structure of those compounds and as such those 
compounds are said to be structurally influential compounds. 
  

 
Figure 3 - Plot of standardized residual versus experimental 
 
 

 
Figure 4 - Plot standardize residual against leverage 
 
4. CONCLUSION 
The result of this work in all ramification passed the minimum 
recommendation for building a good QSAR model, with values 
of R2 = 0.9853, adjusted R2 = 0.9816, �UV�  = 0.9727 and an 
external validated R2 = 0.6649. The applicability domain and the 
low residual values both confirmed that the built model is robust 
and has a high predictive power which satisfies the research aim. 
Conclusively, this work would give first-hand information to the 
medicinal chemist, pharmacist and pharmacologist when 
developing a new anti-breast cancer agents. 
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