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This paper proposes a fast predictive control dtiee with online model update according to
process parametric variations. The proposed corgrob based on the Generalized Predictive
Control (GPC) algorithm, but it integrates the recuesleast squares identification method with a
variable forgetting factor to estimate at each itéwa the parameters of a linear structure model
used for multi-step ahead prediction. For a systeth wdnstraints on the process variables, the
resulting optimization problem of GPC is solved usmqgdratic programming based on the
Alternate Direction Method of Multipliers, which aWs the control signal to be obtained with
small computational effort. In order to validate fh@posed algorithm an experimental case study
that considers the speed control of a direct curmaotor and the proposed controller embedded
in a microcontroller STM32F303K8T6 is presented. &tkpental results use as baseline the GPC
with fixed model parameters and show that the proghésst adaptive predictive control structure
is able to keep almost the same transient respomsalfthe considered operating points of the
motor, while GPC presents high oscillations at op@gtonditions far from the one used to obtain
the nominal model. Even though the proposed controieds to solve two optimization problems
at each sampling instant, it can run about 60 tinmea second in the microcontroller used in this
study.
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1. INTRODUCTION Dynamic Matrix Control (DMC), which considers a nebd
based on the step-response coefficients of the.plans, most
of the formulations with online identification frofiterature

The Model Predictive Control (MPC) paradigm wa : : ; L
introduced and has gained importance in the pastdfcades Eﬁggzty 2;3;:??::3&“[53(1 in some practical appbeatiwhich

both in industry and academia (Clarkeal, 1987). MPC is a
control strategy characterized by using an expi@tess model Although most of MPC applications are limited te th
to formulate an optimization problem whose objestig to process industry, which is characterized by slowedhyics, it is
minimize a cost function. In general, the aim isrtimimize the being more and more used in different applicatiomsluding
distance between the predicted process outputtomeand the those with fast dynamics. Thus, efficient compuatatdf the
future reference trajectory and, at the same tpeealize the resulting optimization problem taking into accowenstraints
control signal effort. The model used in MPC canlibear or on the process must be considered. Short (2012epted a
nonlinear. Although nonlinear models result in attdre time-varying parameter identification scheme for GGP
representation of the static and dynamic proceagackeristics, algorithm implemented in an embedded system, lautrtathod
nonlinear approaches increase the computationattefthus is limited to plants which can be described astfngler Plus
making it difficult to solve the optimization prash within the Dead Time (FOPDT) models subjected to constrairts o
sampling time (Camacho and Bordons, 2007). amplitude and rate on the plant input. Li et a01®) presented

a, framework to reduce the online computational bord

ith i ngerally, L\/IPCl_:s |mplerr;re}nted usmgh ?m“ne?rfmc’dglssociated with constrained MPC in order to computesal-
with Tixed parameters. However, this approac V@Y 10T ime an efficient fuel economy applied to cruisentcol of

?msg?cgsc-ﬁysfra?t%?gtmge?S?glgg:f?\rg?egnuﬁﬁse'sgﬁ: vehicles. Zheng, Negenborn, and Lodewijks (201730 al
Ime-varying. Vel inuatly b presented an efficient algorithm which can solveanallel the

model_ in order to improve the quality of close_z_df_jooontro_l, optimization problem of MPC for a distributed coogtéve
especially when the process presents parametiatioas. This e :
approach also allows the controller to be usedmitithe need system. The fast approa}ch IS |mplemen.ted usmg{\ttmnate
for identifying the system dynamiaspriori, which can speed Direction Method of Multipliers (ADMM) in ordef temprove
up the deployment of new MPC controller’s convergence rates. Saraf and Bemporad (2017) intemtla fast
' method to solve the MPC problem in real time foltiaariable
The literature presents many studies which propB€ discrete-time linear systems under input and outpuostraints.
formulations with online system identification.dmecent study, Even though these works can integrate MPC withcieffit
Zhu and Xiaohua (2016) proposed an adaptive upgléin for computation of the control signal under constraithtsy are not
estimating the parameters of a discrete-time lingmdel represented in GPC and DMC formulations. ReceR#gcinet
combined with constrained MPC. Radecki and Hen@&t7) al. (2018) proposed a solver based on ADMM whichcefitly
presented a predictive thermal control with an rmanlimodel computes the control signal for GPC and DMC forrtiakes, but
estimation based on the unscented Kalman filter RUfor the method considers plants with constant coeffisie
parameter and disturbance estimation. Fesharaknalaand
Sheikholeslam (2017) proposed a new approach ot atlaach
sampling instant the model of a direct current matcorder to
improve performance in the closed-loop predictiventmol.
Jabbour and Mademlis (2019) proposed a new metradctan
automatically tune and adjust the controller patanse
according to the operating point at which the plaséd for
prediction in an MPC operates. Ket al. (2019) presented a
self-tuning adaptive structure combining the reimardeast
squares algorithm based on Kalman filter with MR@tsgy to
control the electron density of plasma in real tils@ew design
of adaptive MPC for wind speed control with uncitias in
system parameters is proposed in Elsisi (2019).gYetnal
(2019) presented an indoor climate predictive antith an
adaptation scheme that incorporates an online attm of
{hese works combine recursive dentiication metiotbgrated SUDISCEd fo any type of affine constrants, andh st
with the resulting MPC problem to solve Iineagr] mbdéjynamics. The proposed controller was implementedal
. . microcontroller and experimentally evaluated.
parameters change, they consider a conventiontd-space
formulation. One drawback of using these formuladias The rest of this paper is organized as followstiSe@
associated with the need for a state observer wibermll the presents the proposed fast adaptive generalizedicfive
states used for the model estimation are measlredidition, control structure and its formulation. Section 8gants the main
in industry it is more common to find MPCs whichkeause of algorithm to implement the proposed method in ahedded
different representations, such as Generalized i¢nesl system. Section 4 presents the experimental cadg sf speed
Control (GPC), which considers predictions based tba control of a direct current motor. Section 5 sumiees the
controlled autoregressive integrated moving averageel, and conclusions of the present work.

This work is an extension of Rovea and Flesch (2019
and proposes an MPC formulation which uses thasa®ileast
squares (RLS) method to update at each sampling tira
model of the plant used by the GPC algorithm fedstion. In
this case, the model used for prediction is lire@ach sampling
instant, which allows the use of fast computatieahhiques
even if the model is not constant from sample taga. Since
the model identification is done based on closexp-ldata, the
level of excitation of the process input is deteredi and the
variable forgetting factor of the plant identificat is
automatically tuned online. The resulting quadratic
programming problem with process constraints iscieffitly
solved using ADMM. As a result, the proposed cdigras able
to be used in plants which can be representediasaa system
in the parameters of any order with variable coéfits,
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2. PROPOSED FAST ADAPTIVE Au(k) = [du(k|k) ... Au(k + N, — 1[k)]". 4)
GENERALIZED PREDICTIVE CONTROL By substituting (3) and (4) in (1), it is possiléewrite the GPC
problem as a quadratic programming problem, writsnin

An overview of the proposed Fast Adaptive GeneedlizEquation (5)

Predictive Control (FAGPC) structure is shown igufe 1. It .1
uses a linear model of the plant, based on a gafigfiction, to J= rernEAuTHAu +b'Au ®)
predict the future behavior of the system outpuif the
coefficients of the model are adjusted at each fagmstant
based on the past behavior of the plant. For tingitqse, an RLS where H = 2(6"QsG + Q;) , b =2(f —w)'G , Qs =
estimator with forgetting factor is used. FinaDMM is used diag(§(j)) € RV*N | @, = diag(1(j)) e RM™*Nu = R €
to determine in a quick manner a sub-optimal cdraetion to RM~*Nu 7 € RNr, andN, is the number of modeled constraints.
be applied to the plant input. In Figure 1, for extain time The problem in (5) is solved at each iteration étednine the
instantk, w is the referencefu is the control incrementy is the optimal sequence of control increments and thé élement of
control signald is a disturbancsyis the output of the plant, andthis sequence is used in the plant.
Z* represents a unit delay. Details about the mainkisl of the 22 RLS Estimator
proposed structure are presented in the sectidawbe '

-------------------------------------------------------- ; The GPC predictions of the system output computed b

s.t. RAu<r,

© FAGPC Algorith : . . . . .
R Plant Model | _ : Equation (2) consider a discrete-time model ofgfzt which
Adasmen; E can be written as:
- -1 —2... —np
—1y _ B(z™Y) _ b1z7+byzm +tby, z
. RLS : G(z )_A -1y T “ltayz=2+4- ~na’ ©)
: Y ) . (z7hH) 1+a1z" +azz" %+ +ap,z7"a
S Estimator :
L |} prediction ! T ———— : whereB(z~1) andA(z™1) are polynomials with degreg, and
: »v(‘)= v Model ) drk) i i i i
- it n,, respectively. RLS is used to estimate the polyiabm
T ‘ Foeff|0|entsb1, bz,...., by, anda, Az) ) Gngs which are grouped
» Optimizer Plant I, in a vector of estimated paramet@re R"a*" as:
GPC Controller @ = [—al —az ... —Qy, bl bz bnb]T. (7)
For a given estimate of the parameters done aritist

k —1, it is possible to obtain the estimate error fae-Gtep-
Figure 1 — Block diagram of the proposed fast adapte ahead prediction of(k) as:

control system.

e(k) = y() — x" (k)8 (k — 1), (8)
) wherex € R™ is a vector of regressors which contains the past
2.1 GPC Formulation values foru andy defined as:

The basic idea of GPC operation is to minimize st cor _ [—y(k = 1) ... —y(e —ny) ulk — 1) ... u(k —n,)]. (9)
function that considers reference tracking errod aontrol “

effort, which is given in (1) for the SISO case (Mey-Rico and Based on the quality of the estimate, measured in
Camacho, 2007; Camacho and Bordons, 2007), Equation (8), the parameter vector can be updated a
J(NuNo, N = B2, 8G9 + 1) = wik + DI + 8(k) = Bk — 1) + K(k=(h), (10)
Z?’;‘l A Auk +j — D], (1) whereK € R™ is the gain vector of RLS algorithm, defined as

(Aguirre, 2015):
wherey(k + j|k) represents the prediction of the plant output
for k + j obtained with information up to the time instént K(k) =
w(k +j) is the future referencd; =d +1 andN, =d + N
are the minimum and maximum values of the predictidn this definition, matrix. € R™9*"¢ is a modified version of
horizon, N,, is the control horizondu(k + j — 1) represents the covariance matrix:
each of the control increments within the controtiton, and T
5(j) andA(j) are the weighting sequences of the referenBék) = M) K(:z,f) QLD (12)
tracking and control effort, respectively. The pectidn
sequence over the prediction horizon can be groimpadecto

L(k-1)x(k)
a(k)+xT (k)L(k-1)x(k)"

11)

r which avoids that the trace Bfe R"9*"¢ assumes small values
or, in other words, that the RLS estimator becomssnsitive

as
~ . . to parameter variations (Aguirre, 2015). Thus, rafeis
y(k) = [§(k + Nyilk) ... 9(k + N, |k)]", (2) obtained by using Equation (12), a new matrix iingel as:
which can be split into a forced and a free respps in P(k) + Q(k),if tr[P(k)] < p,

Equation (3) L) = { P(k), else ’ (13)
y(k) = G(k)Au(k) + f(k), (3) where a positive semidefinite diagonal matrix:

where G is the dynamic step response matfixis the free
response of the system, addt is a vector of the control
increments in the control horizon, defined in Equra(4)
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g 0 0 of the estimator(k), the gain vectoK(k), the estimated
Qk)={(0 =~ 0 (24) parameter@(k) and the covariance matri(k). Note that
0 0 gy 8(k), as alscP(k), is computed in the first iteration using the

initial values declared in line 1 of the Algorithin There are
some rules of thumb to initializ8(0) andL(0) since they
represent the direction and velocity of the congaog of the

is added td. at each sampling instant only if the tracePof
tr[P(k)], is smaller than a minimal trace defined by therus

1 ngxXn 1 11
po - Matrix g € R be 'i composeg_ of f\oeﬁ'c.'ems’p?rameters. The initial values for both dependhenquality of
Q1 Gz > Gng> that must be chosen according to the vaniation @ 5 priori information about the process dynamics. If nothing
each estimated parameter@n If an estimated parameter iSs known about the system parameters, the initiablition of

expected to have large changes, then a large Valu@ the vector of parameters is usually assumed nellfi(0) = 0,
coefficients should be considered. Otherwise, \@bleould be andL(0) is typically chosen in the rang®3I < L(0) < 1071,

small, since large values insert an abrupt gairttferchange of \yhere 0 € R™ is a vector of zeros anbe R™6*™ s the
the estimated parameters. identity matrix. Otherwise, if there is reliabla priori

In Equations (11) and (12&; is known as a Variab|einf0rmati0n about the proce@(O) should be initialized with
forgetting factor and it is used to define the tieimportance the known parameters and the traceL @) must be small,
of new and past data on the estimates. In this woik normally chosen ab(0) < 101.

calculated at each sampling instant as: Once the model is updated, the predictions usethdy

tr[P (k)] iftr[P (k)] < GPC controller are computed (line 7 in AlgorithmThe vector
a(k) = { po ' po’ (15)of free response elemenfgk), and the dynamic step response
1, else matrix, G(k), are calculated with the model of the process

where iftr[P(k)] is smaller thamp,, @ assumes the value ofuPdated by the estimated parameter8(i). Then, the vector
tr[P(k)]/p,, and the RLS estimator gives more attention g future referencew (k) is formed and Equation (5) is solved

current values than past system history values. using a custom developed ADMM optimizer, as showfirie
10. As aresult, a sub-optimal future control imeesmt sequence
3. ALGORITHM Au(k) is obtained, taking into account constraints i@ th

process. The control signa{k) is computed with its past value

From the base formulation developments presenteddfded with the first value of vectdu(k), which contains the
section 2, the implementation of the proposed FAGBC control increment fok. This strategy of control is also called
summarized as in Algorithm 1. receding horizon control, where only the first cohincrement

of the calculated future sequence is applied topthat input
Algorithm 1 Fast Adaptive Generalized Predictive Control  and the whole process is repeated at the next sagripbtant.

1: Initialize: Finally, L(k) anda(k) are updated according to the trace of
6, L, Q. a, po, N. Ny, Qr, Qs y. Au covariance matrixr[P(k)], the variables are updated for the

2 k=1 next iteration and the period required for complgtithe

3: while k > 1 do sampling time is waited.

& Moasure (k) 4. EXPERIMENTAL CASE STUDY

5: orm x(k)

6: Compute e(k), K(k), 8(k), P(k)

7 Compute f(k) and G(k) This section presents an experimental case study to
8- Form w(k) evaluate the proposed FAGPC algorithm. Figure 3wsha

9- Compute H(k), b%(k), R(k).7(k) picture of a didactic plant used, which is composkd direct

10- Run ADMM optimizer current (DC) motor, M, mechanically coupled to a
11: Obtain Au(k) tachogeneratofl,, a power drive circuit, and a microcontroller.

12: Apply u(k) = u(k — 1) + Au(1)
13: if tr[P(k)] < py then

14: L(k)=P(k)+Q(k)

15: alk) = tr[P(k)]/po

16: else

17: L(k) = P(k)

18: alk)=1

19: end if

20: Update Variables

21: k=k+1

22 wait for 7, Figure 3 — Picture of the didactic plant used for e
23: end while experimental case study.

In line 1 both the estimator and GPC parameters are A schematic view of the plant is shown in FigureAd.
declared. The code defined from line 3 to 23 isedpd at each bipolar junction transistoQs,, is used to drive the motor. Since
sampling instant. First, the system outp(k) is measured. u is a Pulse Width Modulation (PWM) signal, the diy
Then, the vector of regressarék) is formed using the currenttransistor just operates in two modes: saturated¢udr The
and previous values forand the previous values for Line 6 feedback signalT, is filtered by the capacitd® and a voltage
can be computed to obtain the one step-ahead fioedirror divider (resistorfk3andR4) is used to adjust the magnitude of
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the output signal to the range supported by thecoantroller. The general scenario proposed for experimentahtest
The clock frequency of the microcontroller processe of the behavior of the process output consistpplyeng a series
configured as 64 MHz. The switchis used to apply a stepof step reference changes which take the plantifferent
disturbance in the output voltagie A microcontroller output is operating points. In all cases, the proposed cbetras
used to trigger the disturbance, which allows atelbetcompared with the regular implementation of GPCthwa
performance comparison between the proposed ctartianhd constant plant model used for prediction).

the classical GPC since the same disturbances earsdd in

both tests. Figure 5 shows the closed-loop responses for nedere

tracking. It can be noted that in the initial saegpthe system
The values of the components used in this expetahenmesponse with the proposed controller does noteptes

case study ar&®®1=R5=220Q; R2=2.2 K); R3=6.8 K2; R4
=10 k2; Qa = TIP41C;D = 1N4007;C = 1000pF; M = 12 W
(@ 12 V);Ta=9 V; Vin =12 V;S= CD4066B;Microcontroller
= STM32F303K8T6 / ARN Cortex* M4 72 MHz / 64 KB
Flash / 16 KB SRAM.

In order to evaluate the performance of the cldseg-

satisfactory transient compared with the resporidaimed by
GPC. This happens mainly because the initial vaasssimed
for the model were not a good representation optast at the
initial operating point, and the number of samplesed for
estimating the coefficients of the plant model was small, so
there was a large change in the plant model usegpréaliction.

After this first transient it is possible to obseithat the proposed
controller has better dynamic response than thiitivaal GPC.
(16), was used In addition, the proposed contrc_)ller is able tofkedmost the

' ' same shape of response during step reference chaaige
IAE = ZZ’;‘f"lw(k) -y, different operating points, while the response ioletd by GPC
] ] ) ] strongly depends on the operating point. The |IAKies for
where n,,4, is the maximum number of iterations of thespc and the proposed controller for reference inaciFigure
algorithm in a given test scenario. 5) are, respectively, 1400.4 % and 1196.3 %. Thidex
reinforces the better response obtained by the osexp

system controlled by both the proposed approachraddional
GPC, the Integral Absolute Error (IAE), as givenEguation

(16)

In this case study, the plant was modeled as tadider

system controller. Even though the proposed controllespngs a good
B ) dynamic behavior, its computational burden is catibf@with
G(z™1) = BET) _ bz (17) the dynamics required to control a DC motor, sirthe

-1y -1° - . . .
AETD ez minimum, maximum and average execution times foe on

iteration areT, .~ =20ms, Ty =164ms and Tsang =
2.2 ms, respectively.
60 T T

The coefficients of the discrete-time transfer fior in
Equation (17) were initialized based on experimletgsts in
open-loop between 20 % and 40 % of the full spdatieoDC
motor ash(0) = [—a, b;]7, wereb, = 0.2 anda, = 0.7.

= = Reference

S —aGPC Y
R3 = 40 Proposed 1 4
——WW\— T 2 \
R3S L- — .ﬁ. gzo 1
S R4 CA~ /AD 3
| — 0
14
— = — — q 30
e i
Microcontroller 3 10
RI + g
FAGPC 0, _JVn 20
T 1 E_m —aee
- R LO) B2 e e e e Proposed b
’'y K I 1 1 1 1 1
(&) u(k) 300 2 4 6 8 10 12 14

Figure 4 — General scheme of the system for the
experimental case study.

Control Signal (%)

The RLS is used to estimate the coefficigntanda, at
each sampling instant based on data measured thattdime 0 5 i
instant. The initial values for RLS estimator wassumed as
P(0) = 101,,,, a(0)=0.95, g, =0.01, g, =0 andp, =
1077, The prediction and control horizons were defingdll =
5 andN, = 3, respectively. Constant weighting factérs 1 and
4 = 1.5 were considered in all experiments, sinde tining Figure 6 shows the parameters estimated by thepeap
results in a good balance between reference-trgaknamics method for all operating points considered in Fégéir Notice
and smoothness of the control signal. Constraintke control that if the plant model is stable, its steady-stgti® is defined
increment and the absolute value of the controhadigare as
considered adu 4y = 20 %, Upar = 100 %, andu,,;, =
0 %.

6 8
Time (s)

Figure 5 — Experimental results of the proposed cdroller
compared with GPC for closed-loop reference trackig.

by
1+a;’

K, =

(18)
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The same initial model parameters were considared
both controllers (GPC and proposed), but afteraatghansient,
the estimated parameters converge to the corresmpnc
operating point of the process. During this firsinsient of the
RLS estimator, the quality of the output predictised by the
controller to define the control action was not goavhich
translated into additional oscillations in the eddoop
response, as shown in Figure 5.

Figure 7 presents the closed-loop response
disturbance rejection. The system was put to opestt a
constant reference of approximately 61 % and &sei step
disturbances were applied. In the first and sedaasients of
Figure 7 a disturbanae = —12 % was inserted and removec
at the plant output. In the third and fourth transsd = 19 %

was inserted and removed.

90 - T 7

= = Reference
- GPC
=~ Proposed

80 |

(%)

70 |

‘ .‘

A

0

gnal

60

Output S

50

40

ontrol Increment (%)

C

s GPC

Control Signal (%)

Proposed

10 20

Time (s)

Figure 7 — Experimental results of the proposed cdroller
compared with GPC for disturbance rejection.

5. CONCLUSION

l ( T T T T T T
0.5F 1
O 4
Z“/
g -05 1
i%_. KA o e e e At e L s P 5 1 -
FCRR - - |
=]
L
E-1S 1
%
m
) —Kp GPC
——a, GPC
25 Kp proposed |
====a, proposed
_3 L 1 L 1 1 1
0 2 - 6 8 10 12 14

Time (s)

Figure 6 — Estimated parameters of the discrete-tie model
given in Equation (17).

It can be seen in Figure 7 that both controllerssvable
to reject the disturbances, but the proposed cliertqoresented
a faster response because the values assumed mmotted of
traditional GPC were obtained at a different opaggpoint. The
proposed controller again presented better IAEXn885.1 %
against 1146.4 % presented by GPC. The minimumjmar
and average sampling periods in the test of Figurare,
respectively, Ty . =2.0ms , T =6.4ms and T.

Smax Savg —
2.2 ms.

This work proposes a controller based on the GPC
algorithm which includes an RLS identification medthto
estimate online the parameters of the linear disdime model
of the plant. The main goal of the proposed colgratructure
is to adjust the coefficients of the model at esanimpling instant
for different operating points, so that the progbsentroller can
be used in plants with variable parameters, coinstfaand fast
dynamics. In this work, the proposed adaptive dtgor
considered a variable forgetting factor updateéherdiccording
to the quality of the closed-loop data used fomtdiation,
which was determined based on the trace of ther@oee
matrix. Thus, when the system is considered nohawee a
persistent excitation, the plant is not updated awoid
identification problems.

An experimental case study showed that the proposed
controller presented a good representation of taatmand a
satisfactory closed-loop transient for all the d¢desed

In addition to presenting better dynamic perform&ncyperating points and for both reference changesiatarbance

the proposed controller resulted in smoother cbstgmals for

rejection. The IAE index values proved that the posed

all the considered operating points and resultedlinost the controller presented better and faster closed-ldgpamic
same transient response characteristics for alloferating pehavior than the traditional formulation of GP@.addition,
points, while the transient response of GPC isdifit for each ihe gbtained computational burden results show that

considered condition. Thus, this case study shdws$ the proposed controller can be embedded in a microobertr
proposed method can be used not only to estimataown

coefficients of a plant model used in an MPC imdaiation,
but also to allow the use of a computationally céiint MPC
implementation to control nonlinear plants. ReguMPC
implementations for nonlinear models require a maair
program to be solved at each iteration, which danit itheir
applicability to plants with fast dynamics. The posed
controller allows the use of linear MPC formulatory
constantly updating the (linear) prediction modebe a good
representation of the plant dynamic behavior forgieen
operating point.

Future work will focus on the expansion to the cate
Multiple-Input  Multiple-Output (MIMO) plants and ¢h
application of the proposed controller to systenith wnore
pronounced nonlinearities.
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