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This paper proposes a fast predictive control structure with online model update according to 
process parametric variations. The proposed controller is based on the Generalized Predictive 
Control (GPC) algorithm, but it integrates the recursive least squares identification method with a 
variable forgetting factor to estimate at each iteration the parameters of a linear structure model 
used for multi-step ahead prediction. For a system with constraints on the process variables, the 
resulting optimization problem of GPC is solved using quadratic programming based on the 
Alternate Direction Method of Multipliers, which allows the control signal to be obtained with 
small computational effort. In order to validate the proposed algorithm an experimental case study 
that considers the speed control of a direct current motor and the proposed controller embedded 
in a microcontroller STM32F303K8T6 is presented. Experimental results use as baseline the GPC 
with fixed model parameters and show that the proposed fast adaptive predictive control structure 
is able to keep almost the same transient response for all the considered operating points of the 
motor, while GPC presents high oscillations at operating conditions far from the one used to obtain 
the nominal model. Even though the proposed controller needs to solve two optimization problems 
at each sampling instant, it can run about 60 times in a second in the microcontroller used in this 
study. 
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1. INTRODUCTION 

The Model Predictive Control (MPC) paradigm was 
introduced and has gained importance in the past few decades 
both in industry and academia (Clarke et al., 1987). MPC is a 
control strategy characterized by using an explicit process model 
to formulate an optimization problem whose objective is to 
minimize a cost function. In general, the aim is to minimize the 
distance between the predicted process output trajectory and the 
future reference trajectory and, at the same time, penalize the 
control signal effort. The model used in MPC can be linear or 
nonlinear. Although nonlinear models result in a better 
representation of the static and dynamic process characteristics, 
nonlinear approaches increase the computational effort, thus 
making it difficult to solve the optimization problem within the 
sampling time (Camacho and Bordons, 2007). 

Generally, MPC is implemented using a linear model 
with fixed parameters. However, this approach is valid only for 
a specific system operating condition or when the process is not 
time-varying. An alternative is to continually estimate the plant 
model in order to improve the quality of closed-loop control, 
especially when the process presents parametric variations. This 
approach also allows the controller to be used without the need 
for identifying the system dynamics a priori, which can speed 
up the deployment of new MPC controllers.  

The literature presents many studies which propose MPC 
formulations with online system identification. In a recent study, 
Zhu and Xiaohua (2016) proposed an adaptive updating law for 
estimating the parameters of a discrete-time linear model 
combined with constrained MPC. Radecki and Hencey (2017) 
presented a predictive thermal control with an online model 
estimation based on the unscented Kalman filter (UKF) for 
parameter and disturbance estimation. Fesharaki, Kamali and 
Sheikholeslam (2017) proposed a new approach to adapt at each 
sampling instant the model of a direct current motor in order to 
improve performance in the closed-loop predictive control. 
Jabbour and Mademlis (2019) proposed a new method that can 
automatically tune and adjust the controller parameters 
according to the operating point at which the plant used for 
prediction in an MPC operates. Koo et al. (2019) presented a 
self-tuning adaptive structure combining the recursive least 
squares algorithm based on Kalman filter with MPC strategy to 
control the electron density of plasma in real time. A new design 
of adaptive MPC for wind speed control with uncertainties in 
system parameters is proposed in Elsisi (2019). Yang et al. 
(2019) presented an indoor climate predictive control with an 
adaptation scheme that incorporates an online estimation of 
uncertainty coefficients in the model of the plant. Although 
these works combine recursive identification methods integrated 
with the resulting MPC problem to solve linear model 
parameters change, they consider a conventional state-space 
formulation. One drawback of using these formulations is 
associated with the need for a state observer when not all the 
states used for the model estimation are measured. In addition, 
in industry it is more common to find MPCs which make use of 
different representations, such as Generalized Predictive 
Control (GPC), which considers predictions based on the 
controlled autoregressive integrated moving average model, and 

Dynamic Matrix Control (DMC), which considers a model 
based on the step-response coefficients of the plant. Thus, most 
of the formulations with online identification from literature 
cannot be directly used in some practical applications which 
already exist in industry. 

Although most of MPC applications are limited to the 
process industry, which is characterized by slow dynamics, it is 
being more and more used in different applications, including 
those with fast dynamics. Thus, efficient computation of the 
resulting optimization problem taking into account constraints 
on the process must be considered. Short (2012) presented a 
time-varying parameter identification scheme for GPC 
algorithm implemented in an embedded system, but the method 
is limited to plants which can be described as First-Order Plus 
Dead Time (FOPDT) models subjected to constraints of 
amplitude and rate on the plant input. Li et al. (2015) presented 
a framework to reduce the online computational burden 
associated with constrained MPC in order to compute in real-
time an efficient fuel economy applied to cruise control of 
vehicles. Zheng, Negenborn, and Lodewijks (2017) also 
presented an efficient algorithm which can solve in parallel the 
optimization problem of MPC for a distributed cooperative 
system.  The fast approach is implemented using the Alternate 
Direction Method of Multipliers (ADMM) in order to improve 
convergence rates. Saraf and Bemporad (2017) introduced a fast 
method to solve the MPC problem in real time for multivariable 
discrete-time linear systems under input and output constraints. 
Even though these works can integrate MPC with efficient 
computation of the control signal under constraints, they are not 
represented in GPC and DMC formulations. Recently, Peccin et 
al. (2018) proposed a solver based on ADMM which efficiently 
computes the control signal for GPC and DMC formulations, but 
the method considers plants with constant coefficients. 

This work is an extension of Rovea and Flesch (2019) 
and proposes an MPC formulation which uses the recursive least 
squares (RLS) method to update at each sampling time the 
model of the plant used by the GPC algorithm for prediction. In 
this case, the model used for prediction is linear at each sampling 
instant, which allows the use of fast computation techniques 
even if the model is not constant from sample to sample. Since 
the model identification is done based on closed-loop data, the 
level of excitation of the process input is determined and the 
variable forgetting factor of the plant identification is 
automatically tuned online. The resulting quadratic 
programming problem with process constraints is efficiently 
solved using ADMM. As a result, the proposed controller is able 
to be used in plants which can be represented as a linear system 
in the parameters of any order with variable coefficients, 
subjected to any type of affine constraints, and with fast 
dynamics. The proposed controller was implemented in a 
microcontroller and experimentally evaluated.  

The rest of this paper is organized as follows. Section 2 
presents the proposed fast adaptive generalized predictive 
control structure and its formulation. Section 3 presents the main 
algorithm to implement the proposed method in an embedded 
system. Section 4 presents the experimental case study of speed 
control of a direct current motor. Section 5 summarizes the 
conclusions of the present work.  
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2. PROPOSED FAST ADAPTIVE 
GENERALIZED PREDICTIVE CONTROL 

An overview of the proposed Fast Adaptive Generalized 
Predictive Control (FAGPC) structure is shown in Figure 1. It 
uses a linear model of the plant, based on a transfer function, to 
predict the future behavior of the system output, but the 
coefficients of the model are adjusted at each sampling instant 
based on the past behavior of the plant. For that purpose, an RLS 
estimator with forgetting factor is used. Finally, ADMM is used 
to determine in a quick manner a sub-optimal control action to 
be applied to the plant input. In Figure 1, for a certain time 
instant k, w is the reference, Δu is the control increment, u is the 
control signal, d is a disturbance, y is the output of the plant, and 
z-1 represents a unit delay. Details about the main blocks of the 
proposed structure are presented in the sections below. 

 

Figure 1 – Block diagram of the proposed fast adaptive 
control system. 

 

2.1 GPC Formulation 

The basic idea of GPC operation is to minimize a cost 
function that considers reference tracking error and control 
effort, which is given in (1) for the SISO case (Normey-Rico and 
Camacho, 2007; Camacho and Bordons, 2007), 

����, ��, ��� = ∑ ����[���� + �|�� − ��� + ��]� +������∑ ����[���� + � − 1�]������ , (1) 

where ���� + �|�� represents the prediction of the plant output 
for � + � obtained with information up to the time instant � , ��� + �� is the future reference, �� = ! + 1 and �� = ! + � 
are the minimum and maximum values of the prediction 
horizon, ��  is the control horizon, ���� + � − 1�  represents 
each of the control increments within the control horizon, and ����  and ����  are the weighting sequences of the reference 
tracking and control effort, respectively. The prediction 
sequence over the prediction horizon can be grouped in a vector 
as "#��� = [���� + ��|�� … ���� + ��|��]%, (2) 

which can be split into a forced and a free response, as in 
Equation (3) "#��� = &���'(��� + )���, (3) 

where &  is the dynamic step response matrix, )  is the free 
response of the system, and '(  is a vector of the control 
increments in the control horizon, defined in Equation (4) 

'(��� = [����|�� …  ���� + �� − 1|��]%. (4) 

By substituting (3) and (4) in (1), it is possible to write the GPC 
problem as a quadratic programming problem, written as in 
Equation (5) 

� = min'( �� '(%-'( + .%'( (5) 

s. t.  2'( ≤ 45,  

where - = 2�&%78& + 79� , .% = 2�) − :�%& , 78 =diag������ ∈ ℝ�×� , 79 = diag������ ∈ ℝ��×�� , 2 ∈ℝ�A×��, 45 ∈ ℝ�A, and �B is the number of modeled constraints. 
The problem in (5) is solved at each iteration to determine the 
optimal sequence of control increments and the first element of 
this sequence is used in the plant. 

2.2 RLS Estimator 

The GPC predictions of the system output computed by 
Equation (2) consider a discrete-time model of the plant which 
can be written as: 

C�DE�� = F�GH��I�GH�� = J�GH�KJ�GH�K⋯KJMNGHMN
�KO�GH�KO�GH�K⋯KOMPGHMP , (6) 

where Q�DE�� and R�DE�� are polynomials with degree SJ and SO , respectively. RLS is used to estimate the polynomial 
coefficients T�, T�, … , TUN and V�, V�, … , VUP, which are grouped 

in a vector of estimated parameters W X ∈  ℝUPKUN as: 

WX = [−V� −V� …  −VUP   T�  T� … TUN]%. (7) 

For a given estimate of the parameters done at instant � − 1, it is possible to obtain the estimate error for one-step-
ahead prediction of ���� as: 

Y��� = ���� − Z%���WX�� − 1�, (8) 

where Z ∈ ℝU[ is a vector of regressors which contains the past 
values for u and y defined as: Z% = [−��� − 1� … − ��� − SO�  ��� − 1� …  ��� − SJ�]. (9) 

Based on the quality of the estimate, measured in 
Equation (8), the parameter vector can be updated as: 

WX��� = WX�� − 1� + \���Y���, (10) 

where \ ∈ ℝU[ is the gain vector of RLS algorithm, defined as 
(Aguirre, 2015): 

\��� = ]�^E��Z�^�_�^�KZ`�^�]�^E��Z�^�. (11) 

In this definition, matrix ] ∈ ℝU[×U[ is a modified version of 
the covariance matrix:  

a��� = ]�^E��E\�^�Z`�^�]�^E��_�^� , (12) 

which avoids that the trace of a ∈ ℝU[×U[ assumes small values 
or, in other words, that the RLS estimator becomes insensitive 
to parameter variations (Aguirre, 2015). Thus, after a  is 
obtained by using Equation (12), a new matrix is defined as: 

]��� = ba��� + 7���, if tr[a���] < fga���, else  ,          (13) 

where a positive semidefinite diagonal matrix: 
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7��� =  jk� 0 00 ⋱ 00 0 kU[
n        (14) 

is added to ] at each sampling instant only if the trace of a, tr[a���], is smaller than a minimal trace defined by the user, fg . Matrix 7 ∈ ℝU[×U[  is composed of coefficients, k�, k�, … , kU[, that must be chosen according to the variation of 

each estimated parameter in WX . If an estimated parameter is 
expected to have large changes, then a large value for 7 
coefficients should be considered. Otherwise, values should be 
small, since large values insert an abrupt gain for the change of 
the estimated parameters. 

In Equations (11) and (12), o  is known as a variable 
forgetting factor and it is used to define the relative importance 
of new and past data on the estimates. In this work o  is 
calculated at each sampling instant as: 

o��� = pqr[a�^�]st , if tr[a���] < fg1, else ,                                       (15) 

where if tr[a���] is smaller than fg , o  assumes the value of tr[a���]/fg , and the RLS estimator gives more attention to 
current values than past system history values. 

3. ALGORITHM 

From the base formulation developments presented in 
section 2, the implementation of the proposed FAGPC is 
summarized as in Algorithm 1.  

 

In line 1 both the estimator and GPC parameters are 
declared. The code defined from line 3 to 23 is repeated at each 
sampling instant. First, the system output ����  is measured. 
Then, the vector of regressors Z��� is formed using the current 
and previous values for � and the previous values for �. Line 6 
can be computed to obtain the one step-ahead prediction error 

of the estimator Y��� , the gain vector \��� , the estimated 
parameters WX���  and the covariance matrix a��� . Note that WX���, as also a���, is computed in the first iteration using the 
initial values declared in line 1 of the Algorithm 1. There are 
some rules of thumb to initialize WX�0�  and ]�0�  since they 
represent the direction and velocity of the convergence of the 
parameters. The initial values for both depend on the quality of 
the a priori information about the process dynamics. If nothing 
is known about the system parameters, the initial condition of 
the vector of parameters is usually assumed null, i.e.  WX�0� = v, 
and ]�0� is typically chosen in the range 10wx ≤ ]�0� ≤ 10yx, 
where v ∈ ℝU[  is a vector of zeros and x ∈ ℝU[×U[  is the 
identity matrix. Otherwise, if there is reliable a priori 
information about the process, WX�0� should be initialized with 
the known parameters and the trace of ]�0�  must be small, 
normally chosen as ]�0� ≤ 10x.  

Once the model is updated, the predictions used by the 
GPC controller are computed (line 7 in Algorithm 1). The vector 
of free response elements, )���, and the dynamic step response 
matrix, &��� , are calculated with the model of the process 
updated by the estimated parameters in WX���. Then, the vector 
of future references :��� is formed and Equation (5) is solved 
using a custom developed ADMM optimizer, as shown in line 
10. As a result, a sub-optimal future control increment sequence '(���  is obtained, taking into account constraints in the 
process. The control signal ���� is computed with its past value 
added with the first value of vector '(���, which contains the 
control increment for �. This strategy of control is also called 
receding horizon control, where only the first control increment 
of the calculated future sequence is applied to the plant input 
and the whole process is repeated at the next sampling instant. 
Finally, ]��� and o��� are updated according to the trace of 
covariance matrix tr[a���], the variables are updated for the 
next iteration and the period required for completing the 
sampling time is waited. 

4. EXPERIMENTAL CASE STUDY 

This section presents an experimental case study to 
evaluate the proposed FAGPC algorithm. Figure 3 shows a 
picture of a didactic plant used, which is composed of a direct 
current (DC) motor, M, mechanically coupled to a 
tachogenerator, Ta, a power drive circuit, and a microcontroller. 

 

Figure 3 – Picture of the didactic plant used for the 
experimental case study. 

A schematic view of the plant is shown in Figure 4. A 
bipolar junction transistor, Qa, is used to drive the motor. Since 
u is a Pulse Width Modulation (PWM) signal, the driving 
transistor just operates in two modes: saturated or cut. The 
feedback signal, Ta, is filtered by the capacitor C and a voltage 
divider (resistors R3 and R4) is used to adjust the magnitude of 
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the output signal to the range supported by the microcontroller. 
The clock frequency of the microcontroller processor is 
configured as 64 MHz. The switch S is used to apply a step 
disturbance in the output voltage Ta. A microcontroller output is 
used to trigger the disturbance, which allows a better 
performance comparison between the proposed controller and 
the classical GPC since the same disturbances can be used in 
both tests. 

The values of the components used in this experimental 
case study are: R1 = R5 = 220 Ω; R2 = 2.2 kΩ; R3 = 6.8 kΩ; R4 
= 10 kΩ; Qa = TIP41C; D = 1N4007; C = 1000 μF; M = 12 W 
(@ 12 V); Ta = 9 V; Vin = 12 V; S = CD4066B; Microcontroller 
= STM32F303K8T6 / ARM® Cortex® M4 72 MHz / 64 KB 
Flash / 16 KB SRAM. 

In order to evaluate the performance of the closed-loop 
system controlled by both the proposed approach and traditional 
GPC, the Integral Absolute Error (IAE), as given in Equation 
(16), was used.  

zR{ =  ∑ |���� − ����|U|P}^�� , (16) 

where S~O�  is the maximum number of iterations of the 
algorithm in a given test scenario. 

In this case study, the plant was modeled as a first-order 
system  

C�DE�� = F�GH��I�GH�� = J�GH�
�KO�GH�. (17) 

The coefficients of the discrete-time transfer function in 
Equation (17) were initialized based on experimental tests in 
open-loop between 20 % and 40 % of the full speed of the DC 
motor as WX�0� = [−V� T�]%, were T� = 0.2 and V� = 0.7. 

 

Figure 4 – General scheme of the system for the 
experimental case study. 

The RLS is used to estimate the coefficients T� and V� at 
each sampling instant based on data measured up to that time 
instant. The initial values for RLS estimator were assumed as a�0� = 10x��� ,  o�0� = 0.95 , k� = 0.01 , k� = 0  and fg  = 10Ey. The prediction and control horizons were defined as N = 
5 and Nu = 3, respectively. Constant weighting factors δ = 1 and 
λ = 1.5 were considered in all experiments, since this tuning 
results in a good balance between reference-tracking dynamics 
and smoothness of the control signal. Constraints in the control 
increment and the absolute value of the control signal are 
considered as: ��~O� = ±20 %, �~O� = 100 %, and �~�U =0 %.  

The general scenario proposed for experimental testing 
of the behavior of the process output consists in applying a series 
of step reference changes which take the plant to different 
operating points. In all cases, the proposed controller is 
compared with the regular implementation of GPC (with a 
constant plant model used for prediction).  

Figure 5 shows the closed-loop responses for reference 
tracking. It can be noted that in the initial samples the system 
response with the proposed controller does not present a 
satisfactory transient compared with the response obtained by 
GPC. This happens mainly because the initial values assumed 
for the model were not a good representation of the plant at the 
initial operating point, and the number of samples used for 
estimating the coefficients of the plant model was too small, so 
there was a large change in the plant model used for prediction. 
After this first transient it is possible to observe that the proposed 
controller has better dynamic response than the traditional GPC. 
In addition, the proposed controller is able to keep almost the 
same shape of response during step reference changes at 
different operating points, while the response obtained by GPC 
strongly depends on the operating point. The IAE values for 
GPC and the proposed controller for reference tracking (Figure 
5) are, respectively, 1400.4 % and 1196.3 %. This index 
reinforces the better response obtained by the proposed 
controller. Even though the proposed controller presents a good 
dynamic behavior, its computational burden is compatible with 
the dynamics required to control a DC motor, since the 
minimum, maximum and average execution times for one 
iteration are ��|�M = 2.0 ms , ��|P} = 16.4 ms  and ��P�� =2.2 ms, respectively. 

 

Figure 5 – Experimental results of the proposed controller 
compared with GPC for closed-loop reference tracking. 

Figure 6 shows the parameters estimated by the proposed 
method for all operating points considered in Figure 5. Notice 
that if the plant model is stable, its steady-state gain is defined 
as 

�� = J��KO�. (18) 
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The same initial model parameters were considered in 
both controllers (GPC and proposed), but after a short transient, 
the estimated parameters converge to the corresponding 
operating point of the process. During this first transient of the 
RLS estimator, the quality of the output prediction used by the 
controller to define the control action was not good, which 
translated into additional oscillations in the closed-loop 
response, as shown in Figure 5.  

Figure 7 presents the closed-loop response for 
disturbance rejection. The system was put to operate at a 
constant reference of approximately 61 % and a series of step 
disturbances were applied. In the first and second transients of 
Figure 7 a disturbance ! ≅  −12 % was inserted and removed 
at the plant output. In the third and fourth transients ! ≅  19 % 
was inserted and removed. 

 

Figure 6 – Estimated parameters of the discrete-time model 
given in Equation (17). 

It can be seen in Figure 7 that both controllers were able 
to reject the disturbances, but the proposed controller presented 
a faster response because the values assumed in the model of 
traditional GPC were obtained at a different operating point. The 
proposed controller again presented better IAE index: 855.1 % 
against 1146.4 % presented by GPC. The minimum, maximum 
and average sampling periods in the test of Figure 7 are, 
respectively, ��|�M = 2.0 ms , ��|P} = 6.4 ms  and ��P�� =2.2 ms.  

In addition to presenting better dynamic performance, 
the proposed controller resulted in smoother control signals for 
all the considered operating points and resulted in almost the 
same transient response characteristics for all the operating 
points, while the transient response of GPC is different for each 
considered condition. Thus, this case study shows that the 
proposed method can be used not only to estimate unknown 
coefficients of a plant model used in an MPC implementation, 
but also to allow the use of a computationally efficient MPC 
implementation to control nonlinear plants. Regular MPC 
implementations for nonlinear models require a nonlinear 
program to be solved at each iteration, which can limit their 
applicability to plants with fast dynamics. The proposed 
controller allows the use of linear MPC formulations by 
constantly updating the (linear) prediction model to be a good 
representation of the plant dynamic behavior for a given 
operating point. 

 

Figure 7 – Experimental results of the proposed controller 
compared with GPC for disturbance rejection. 

 

 5. CONCLUSION 

This work proposes a controller based on the GPC 
algorithm which includes an RLS identification method to 
estimate online the parameters of the linear discrete-time model 
of the plant. The main goal of the proposed controller structure 
is to adjust the coefficients of the model at each sampling instant 
for different operating points, so that the proposed controller can 
be used in plants with variable parameters, constraints, and fast 
dynamics. In this work, the proposed adaptive algorithm 
considered a variable forgetting factor updated online according 
to the quality of the closed-loop data used for identification, 
which was determined based on the trace of the covariance 
matrix. Thus, when the system is considered not to have a 
persistent excitation, the plant is not updated to avoid 
identification problems. 

An experimental case study showed that the proposed 
controller presented a good representation of the plant and a 
satisfactory closed-loop transient for all the considered 
operating points and for both reference changes and disturbance 
rejection. The IAE index values proved that the proposed 
controller presented better and faster closed-loop dynamic 
behavior than the traditional formulation of GPC. In addition, 
the obtained computational burden results show that the 
proposed controller can be embedded in a microcontroller.  

Future work will focus on the expansion to the case of 
Multiple-Input Multiple-Output (MIMO) plants and the 
application of the proposed controller to systems with more 
pronounced nonlinearities. 
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