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1. INTRODUCTION  

The inability to instinctively sustain, withhold, or modify 
adaptive behavior in response to varying situational demands 
could be referred to as cognitive inflexibility. This is highly 
correlated with diverse psychiatric disorders such as 
depression, schizophrenia and obsessive-compulsive disorders 
(Lin et al., 2017; Boulougouris, Glennon and Robbins, 2008).  

Cognitive dysfunction appears to be an independent and 
core domain of depression which may lead to reduce life 
quality of depression patients (Poyurovsky et al., 2003). 
Depression is a serious and common disorder including 
symptoms like a feeling of sadness, hopelessness, weight loss 
or gain, tiredness, changes in sleeping routine and thinking of 
suicide(Kaya et al., 2017). Depression is a major public health 
problem and the fourth cause of the global burden of 
disease(Kaya et al., 2017;Khattab et al., 2015).  

Depression constitutes a serious threat to the health of 
approximately 121 million people and thus is among the top 
five primary causes of disease and disability burden all over 
the world and also, cognitive dysfunction has been recognized 
as a leading cause of morbidity and mortality throughout the 
world (Lin et al., 2017)  

The serotoninergic system is connected in the control of 
various physiological and behavioral activities; thus, it is 
known to regulate emotion, mood and appetite. Reduced 
serotoninergic neurotransmission has been proposed to play a 
key role in the etiology of depression. Drugs inhibiting 
serotonin transport have been very useful for the treatment of 
depression because, the concentration of synaptic serotonin is 
regulated by its reuptake into the presynaptic terminal. Highly 
specific serotonin reuptake inhibitors such as Ritanserin, 
YM992, M100907, LY367265, paroxetine, and nefazodone 
have been developed in the treatment of psychotic disorder and 
are increasingly prescribed for depressed patients(Lin et al., 
2017; Barr et al., 2004). Despite many developments in the 
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A theoretical and Insilco pharmacokinetic studies were carried out on some Phenyl 
piperidine derivatives using Density Functional Theory (DFT/B3LYP/6-31G*) with Spartan 
14 V1.1.4 software to investigate the antipsychotic activity of the compounds. PaDEL-
Descriptor software 2.20 version was utilized to generate molecular descriptors while 
Genetic Function Algorithm (GFA) was used for variable selections to develop Penta-
parametric Multi-linear regression models. The statistical parameters of the best model 
(R2

Train= 0.8572, R2
adj = 0.8274, R2

Test = 0.678, Q2cv (LOO) = 0.7664, Ꭓ2= 0.0036, r2
m 

(LOO)= 0.694, cR2
p= 0.763, RMSE= 0.168 and Delta r2

m (LOO)= 0.0051) revealed that the 
model was predictive, robust and possessed good quality. Similarly, the descriptors 
(AATS8v, GATS1e, SpMAD_Dzs, SP-7 and RDF135v) were found to influence the inhibitory 
activity of the compounds. Likewise, descriptors SpMAD_Dzs (38.94%) with positive 
correlation and SP-7 (33.17%) with negative correlation showed predominant influences on 
the observed activity of the compounds evidenced by their highest percentage contributions. 
The model proved to be reliable, stable and could be accepted because it satisfied the 
general requirements for QSAR model development. More so, Insilco Pharmacokinetics and 
ADMET Risk screenings showed that four compounds (1,2,5 and 6) possessed exceptional 
good distribution profiles with low ADMET Risk. Consequently, the obtained results are 
envisaged to provide a rationale blueprint for the structural requirements for the 
development of novel Phenyl piperidine analogues as potent antidepressant agents. 
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field of antidepressants, the clinical use of currently used drugs 
was restricted as a result of various adverse effects and a 
response in less than 50% of patients (Fishback, Robson, Xu, 
& Matsumoto, 2010). Thus, the search for new class of more 
effective and safer antidepressants has become a sine qua non. 
With advances in computer technology, chemical biology, and 
molecular biology, computer simulation technology plays a 
prominent role in the growth of new agents (LIN et al., 
2016;Gao, Han and Ren, 2016). Computer-aided drug design 
(CADD) can greatly raise the efficiency of developing and 
designing novel drugs, and thus has been used tremendously in 
the present pharmaceutical industry(Wang, Yang, Li, & Wang, 
2016). In essence, CADD approaches, such as the 3D-QSAR 
and molecular docking have been vastly conducted in the 
optimization and development of inhibitors(Yang et al., 2016) 
in which 3D-QSAR modeling has proven its efficiency in 
exploring the pharmacological properties of the studied 
molecules in modern drug discovery(Wu et al., 2014). The 3D-
QSAR methods have been successfully utilized to obtain 
insights into the structural requirements that affect their 
biological activity for many series of molecules(Yang et al., 
2016). 

In the present study, bioinformatic investigation via the 
Quantitative Structure-Activity Relationship (QSAR) approach 
and Insilco Pharmacokinetics studies using ADMET 
PredictorTM  software (SimulationPlus Inc., USA) and 
MedChem DesignerTM software were procured to harness the 
crucial structural features of some Phenyl piperidine 
derivatives to develop a mathematical model that could 
quantitatively define the relationship between the structures of 
these compounds and their molecular descriptors and evaluate 
the Insilco Pharmacokinetics properties of the compounds 
respectively. The results of this research are hoped to guide 
rational structural modification and design of novel and more 
potent Phenyl piperidine analogues that would offer some 
reference for further experimental study.  

 

2. MATERIALS AND COMPUTATIONAL 
METHODS 

2.1. Preparation and Division of Experimental Data set  

A total of 43 experimental data set of Phenyl piperidine 
derivatives with reported inhibitory activity (IC50 values) 
against the serotonin transporter (SERT) sourced from the 
literature were used in this present study(Zare, 
Fereidoonnezhad, Afshar, & Ramezani, 2017). The inhibitory 
activity (IC50 values) of the experimental data set compounds 
were converted into consistent pIC50 (-logIC50) values for 
improving the normal distribution of the experimental data 
points defined as the dependent variables in the QSAR 
modeling. The chemical names, 2D chemical structures and 
inhibitory activity of the compounds (Phenyl piperidine 
derivatives) is presented in Supplementary Table S1.  

The experimental data set (Phenyl piperidine  
derivatives) was split into 70% training set (30 compounds) 
and 30% test set (13 compounds)  in line with the optimum 
splitting pattern of a data set in QSAR study(Patil, 2012) using 
“Dataset Division GUI 1.2” software based on Kennard stone 
algorithm technique(Kennard & Stone, 1969). The training set 
was used for the QSAR model development while the test set 

compounds were employed for the external validation of the 
model(S. B. Olasupo, Uzairu, Shallangwa, & Uba, 2019). 

2.2 Molecule standardization and optimization  

The ChemDraw software ultra-version 12.0 used to 
draw 2D structures of the compounds while the Spartan 14 
V1.1.4 wavefunction software package was employed to 
optimize molecular geometries of the molecules (Hehre & 
Huang, 1995). The 2D (two-dimensional) structures were 
converted into 3D (three-dimensional) structures by importing 
it into Spartan 14 V1.1.4 wavefunction software for energy 
minimization in two steps. In the first phase, the converted 3D 
structures were minimized by Molecular Mechanics Force 
Field (MMFF) optimization to remove strain energy. In the 
second step, the minimized MMFF molecules were re-
optimized via the Spartan wavefunction software package for 
complete geometry optimization with the aid of Density 
Functional Theory (DFT) by the B3LYP/6-31G* basis 
set(Bauernschmitt & Ahlrichs, 1996) as to compute the 
molecular descriptors of the molecules. Figure 1 depicts 2D 
and 3D chemical structures of compound 28. 

 
      (a) 

 
                                   (b) 

Figure 1- (a) 2D and (b) 3D chemical structures of 
compound 28. 

 

2.3 Descriptors calculations 

The molecular descriptors which include 
physicochemical, atom type count used in constructing the 
models were calculated for each molecule by using the 
PaDEL-Descriptor software 2.20 version tool kit (Yap, 2011) 
and Spartan 14 software to generate thousands of descriptors 
comprising of 0D, 1D, 2D, and 3D types for each molecule. 
The highly correlated descriptors were removed in other to 
select the best subset of descriptors. Pearson’s correlation 
matrix was used to select the suitable descriptors for Genetic 
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Function Approximation (GFA) analysis based on the 
correlation coefficients. The details of the descriptors and 
correlation matrix for the developed QSAR model are 
presented in Table 2 and Table 3 respectively. 

 

2.4 MLR-Based Model Development  

Multiple Linear Regression (MLR) method with a 
statistical analysis of the Genetic Function Approximation 
(GFA) approach via a Material studio software 8.0 version was 
utilized to construct the QSAR models. The MLR-based 
QSAR models were developed by using the training sets with 
the experimentally determined inhibitory activity on the 
logarithmic scale (pIC50) as the dependent variable and the 
descriptors as the independent variable. The MLR-GFA 
method has a good attribute to produce a population of model 
equations compare to other statistical methods that yield only a 
singular model (S. Olasupo, Uzairu, & Sagagi, 2016). Also, 
unlike the stepwise regression technique, the GFA technique 
generates better models and selects the basic function 
genetically(Olasupo et al., 2019). Out of the three statistically 
significant developed GFA models, the best model (Model 1) 
was selected based on the one with the smallest Friedman’s 
Lack of Fit (LOF) score. The use of Friedman’s lack-of-fit 
(LOF) measure is because it has several advantages over the 
regular least square error measure and it is estimated measured 
using a slight variation of the original Friedman formula in the 
Materials Studio software (Ameji, Uzairu, & Idris, 2015). LOF 
is computed via this revised mathematical formula: 

LOF =                  ( 1) 

SSE denotes the sum of squares of errors, c is the 
number of terms (basic functions) in the model, other than the 
constant term, d represents user-defined smoothing parameter, 
p represents the total number of descriptors made up in the 
model and M is the number of samples in the training data set.. 

 

2.5 Statistical evaluation and validation of the Model 

A rigorous validation is an important, integral 
component of QSAR model development (Veerasamy et al., 
2011). Generally, validation of a QSAR model does not only 
rely on the evaluation of statistical fitness and predictiveness 
of a model using cross-validation technique alone but also 
more significantly is the assessment of data quality (a well-
defined End-point and unambiguous algorithm), domain of 
applicability, mechanistic interpretability and appropriate 
statistical evaluations (using the training set and the test set for 
internal and external validations respectively) of the models. 
This is a conceptual framework that constitutes the principles 
of the Organization for Economic Co-operation and 
Development (OECD) for validating a QSAR model(Leonard 
and Roy, 2006;OECD, 2007)   

In search to build a stable, predictive, reliable, robust 
and acceptable QSAR model that is also satisfied OECD 
principles of model validations, different types of validations 
techniques were procured and the best model was selected/ 
affirmed by applying these various statistical parameters. The 
procedures employed for both the internal and external 
validations techniques include; R2

Pred (R2 for external test set), 

R2 ( squared of correlation coefficient for training set ), Q2 
(cross-validated correlation coefficient), root-mean-squared 
error (RMSE), chi-squared, degree of freedom (DF), F test 
(Fischer’s value) for statistical relevance; CR2P (coefficient of 
determination for Y-Randomization/scrambling), Domain of 
applicability in the chemical space (AD) and the evaluation of 
mechanistic associations between the descriptors that revealed 
in the model and the predicted endpoint ( interpretation of the 
model).  

 

2.6 Procured Validations Procedures  

Some of the procedures and procured validation 
techniques employed in this study are shown via the Equations 
2-7 and the statistical validations parameters alongside with the 
threshold values (Veerasamy et al., 2011) for the assessment of 
a QSAR model as a reliable screening tool in practical 
applications are presented in Table 1.  

Least squares fit (R2): R2 (squared correlation 
coefficient) for the comparison between the predicted and 
experimental activities. A value of R2 closes to 1.0 indicates 
the goodness of fit and R2 is expressed mathematically as, 

                               (2)                                                                                                                          

 Ypred, Yexp and training indicate the predicted, 
experimental, and mean values of experimental activity of 
training set. 

Cross-validation coefficient (Q2): The Leave-one-out 
(LOO) cross-validated coefficient (Q2) is given by this 
formula; 

Q2= 1-                                (3) 

A and B indicate the predicted and experimental 
activity respectively of the training set and C is the mean 
activity value of the training set. 

 Adjusted R2 (R2
adj): 

                                       (4)   

D represents the number of descriptors and M indicates 
the number of molecules in the training set. 

Chi-squared and Root-mean squared error (RMSE) 

 

                             (5) 

            (6)                 

y and ŷ indicate the experimental and predicted activity for 
each compound in the training set, ym is the mean of the 
experimental activities, and n is the number of molecules of 
the data set  

Predicted R2
Ext: The predicted R2

Ext for the external 
validation could be computed by using this equation 



 

R2
Ext = 1 -                                          (7) 

W and T represent predicted and experimental activity values 
of the test set molecules and X indicates the mean activity 
value of the training dataset. 

Variance inflation factors (VIF): To verify multi-collinearity 
(orthogonality) among the descriptor, VIF is determined via 
this mathematical expression;  

VIF =                                                (8)                                  

 

R2 is the correlation coefficient of the multiple regression 
between the variables in the model. 

MLR Y-Randomization: Y-randomization (Scrambling 
test) was performed on the training set data (Table 4) by 
permuting the activity values to the selected descriptors matrix 
via “MLR Y-Randomization Test 1.2 ” software sourced from 
DTC Lab software (Myers, 1990). The Coefficient of 
determination (cR2

p) when computed should have a value 
greater than 0.5 to pass the Y-randomization test. Coefficient 
of determination (cR2

p) is defined by this equation formula;  

  C�2� = � ∗ (�2 − (������� ��)2)1/2                      (9) 

where c is Coefficient of determination, Average Rr is average 
‘R’ of random models  

 

2.6.1 Defining Domain of Applicability of the Model 

It is important to note that before a QSAR model is 
used for screening of chemicals, its domain of applicability 
must be correctly defined and predictions for only molecules 
that lie within the domain could be considered as reliable 
chemical candidates, no matter how statistically significant, 
robust and validated is the model (Tropsha, Gramatica, & 
Gombar, 2003). To evaluate and define the domain of 
application of the model, the extent of extrapolation (leverage/ 
standardization approach) and similarity distance (Euclidean 
Based) methodologies of Applicability Domain (Figure 5 and 
Supplementary Table S2a &b) were employed in this research.  

The leverage hi is defined as; 

                 (10)  

Here the descriptor row is the vector of the considered 

compound i, hi is the n x k descriptor matrix of the training set 
for building the model. 

The warning leverage (h*) is computed as; 

                           (11) 

n is the number of training compounds and P depicts the 
number of predictor variables in the model. A model is 
adjudged to be reliably predicted if the leverage hi < h* for the 
investigated molecules and leverage greater than the warning 
leverage implies that the predicted response is due to 
significant extrapolation of the model and such model may not 
be reliable for practical use (Tropsha et al., 2003). With the aid 
of William’s plot (Figure 5), the significant area of the model 
in terms of chemical space can be evaluated and visualized.  

The similarity distance (Euclidean Based) Applicability 
is given as: 

���� = [Σwk ( − )2]1/2                           (12) 

where difference −   = distance of the test set compounds 
from the training set compounds wk = weighted vector 
corresponding to the importance of the kth descriptor in the 
model calculated using auto-scaled descriptors  and  
represent molecules from both the test set and training set 
(Netzeva et al., 2005).  

 
2.7 In silico pharmacokinetics evaluation, Drug-likeness 
prediction and ADMET Risk screening of the compounds 

        Lipinski’s rule of five was employed to assess the drug 
likeness or pharmacological active of the studied compounds in 
humans(Lipinski, 2016; Lipinski et al., 1997). Also certain 
physicochemical properties were computed (Supplementary 
Table S3) for Insilco evaluation of pharmacokinetics of the 
compounds such as the quantitative estimation of drug-like 
properties, lipophilicity (S+logP), distribution (S+logD), 
bioavailability (%Fraction bioavailable), absorption 
(%Fraction absorbed), blood–brain-barrier penetration 
(LogBB), Renal clearance, ADMET Risk, Toxicity Risk as 
well as human ether-a-go-go related gene (hERG_pIC50) by 
using the ADMET PredictorTM  software (SimulationPlus 
Inc., USA) and MedChem DesignerTM software(Tareq Hassan 
Khan, 2010). 

 

Table 1 - Chemometric validation parameters with their threshold values for accepting QSAR models as a reliable 
screening tool for practical applications. 

S/N Statistical 

Parameter 

Definition Validation Type Threshold 

value 

Comput

ed value 

Implication 

1. R2 Training set  Co-efficient of 
determination 

Internal ≥0.6 0.857 goodness-of-fit  

2. R2
Ext (Test set) Co-efficient of 

determination of external 
and test set 

External ≥0.5 0.678 good predictivity 

3. R2
adj Adjusted R-squared Internal >0.6 0.827 goodness-of-fit 
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4. Q2
cv  Cross-Validation Co-

efficient  
Internal >0.5 0.766 pass 

5. R2-Q2
cv Difference between R2 and 

Q 
Internal ≤0.3 0.091 pass 

6. LOF Friedman Lack of fit score Internal Minimal  statistically significance 

7. X2 Chi-squared Internal <0.5  0.0036 good predictivity 

8. RMSE Root-mean squared error Internal 0.3    0.168 good predictivity 

9. cR2p Coefficient of determination 
for �-randomization  

Random model >0.5 0.763 Robustness 

10. VIF Variance Inflation Factor  1≤ VIF ≤10  orthogonal and statistical 
significance. 

11. r2
m (LOO)   

 
predictability of the selected 
model 

External ≥0.5  0.694 good external prediction 

12. Delta r2
m (LOO)  

 

 
predictability of the selected 
model 

External <0.2  0.0051 good external prediction 

 
Table 2 - Notations, symbols and definition of the descriptors in the developed model 

S/N Descriptor 
Notation 

Descriptor Symbols Definition 

1 t AATS8v Broto-Moreau autocorrelation weighted by van der Waals volumes 
2 w GATS1e Geary autocorrelation weighted by Sanderson electronegativities 
3 x SpMAD_Dzs Spectral mean absolute deviation from Barysz matrix weighted by I-state 
4 y SP-7 Simple path, order 7 
5 z RDF135v Radial distribution function weighted by relative mass 

 
Table 3 - Pearson’s correlation matrix and Statistical quality parameters of the Model 

  AATS8v GATS1e SpMAD_Dzs SP-7 RDF135v VIF t-statistics p value % 
Contribution 

AATS8v 1 
    

1.21 5.666 7.79E-06 9.68 
GATS1e -0.188 1 

   
1.05 -6.797 4.97E-07 13.63 

SpMAD_Dzs 0.436 -0.131 1 
  

1.48 9.618 1.05E-09 38.94 
SP-7 0.647 -0.386 0.727 1 

 
2.09 -10.158 3.62E-10 33.17 

RDF135v 0.357 -0.055 0.376 0.383 1 1.04 -3.783 0.0009 4.61 
 
Table 4 - MLR Y-Randomization Test 

Model R R^2 Q^2 

Original 0.926 0.857 0.766 

Random 1 0.509 0.259 -0.125 

Random 2 0.582 0.339 -0.048 

Random 3 0.575 0.331 0.0083 

Random 4 0.333 0.111 -0.461 

Random 5 0.340 0.116 -0.349 

Random 6 0.324 0.105 -0.633 

Random 7 0.355 0.126 -0.344 

Random 8 0.371 0.138 -0.522 

Random 9 0.314 0.099 -0.406 

Random 10 0.506 0.256 -0.183 

 
Random Models 
Parameters 
Average r : 0.421 

Average r^2 : 0.188 

Average Q^2 : -0.306 

cRp^2 : 0.763 



 

 
 

 

Figure 2 - Plot of (Actual) Experimental pIC50 against the 
predicted pIC50 of training set. 

 

Figure 3 - Plot of (Actual) Experimental pIC50 against 
predicted pIC50 of test set.  

 

 

Figure 4 - Plot of standardized residual against predicted 
pIC50 of the compounds. 

 

Figure 5 - William’s plot of Model 1. 

 

3. RESULTS AND DISCUSSION 

3.1 Bioinformatic modeling and statistical analysis 

Bioinformatic modeling was performed on 43 
compounds of Phenyl piperidine derivatives reported being 
inhibitors of the serotonin transporter (SERT) to investigate 
and evaluate their antipsychotic properties for mood disorder. 
This led to the development of a Penta-parametric equation of 
three GFA models. Model 1 with the most statistically 
significant parameters (R2

Train= 0.8572, R2
adj = 0.8274, Q2

cv = 
0.7664, R2

Test = 0.678, F-value = 28.81) was picked as the best 
model (Equation 13). The descriptor notations, symbols and 
their definition as it appears in the model are presented in 
Table 2. 

Model 1: 

pIC50 = 1.176655838t - 1.594327634w + 4.721202317x - 
3.966993752y-0.554324221z+8.199016114                 (13) 

n = 43, Friedman LOF = 0.1578, R2 = 0.8572, R2
adj. = 

0.8274, Q2 = 0.7664, F-value = 28.811. 

  

Based on the significance of cheminformatic and statistical 
parameters for a reliable model, the selected (Model 1) gives 
the best GFA derived QSAR model for predicting the 
antipsychotic activity of the studied compounds vis-a-viz the 
validation parameters of the model. The reported 
cheminformatic parameters of the model (R2

Train= 0.8572, R2
adj 

= 0.8274, Q2
cv = 0.7664, R2

Test = 0.678, R2-Q2
cv = 0.091, Ꭓ2= 

0.0036, r2
m (LOO)= 0.694 and Delta r2

m (LOO)= 0.0051) are 
all in agreement with acceptable validation parameters 
presented in Table 1 for a reliable QSAR model(Golbraikh & 
Tropsha, 2002). This suggests that the developed model is very 
predictive and reliable because the R2

Train>0.5, , R2
Test  > 0.6, , 

Q2
cv > 0.5 and r2

m> 0.5(S. B. Olasupo et al., 2019). That is, the 
internal (R2

Train) and external (R2
Test) predictive ability of the 

model was 85.6% and 67.8% respectively. A plot of predicted 
pIC50 against experimental pIC50 gives an insight into how well 
the model was trained and how well it predicts the 
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antipsychotic activity of the test compounds. The correlation 
coefficient R2 value for the plots of predicted against 
experimental activity for both training set and test set data is 
greater than 0.6 (Figures 2 and 3), this shows that the QSAR 
model produced a high antipsychotic activity-descriptors 
relationship accuracy (R2

Train= 0.8572) and a good activity 
prediction accuracy (R2

Test = 0.678), a good indication that 
there is a linear relationship between the experimental and 
predicted activity of the compounds. The computed difference 
between the R2 and R2

adj value (R2- R2
adj= 0.0298) is less than 

0.3, this suggests that the number of descriptors involved in the 
developed model is good and acceptable (Veerasamy et al., 
2011). The plot of standardized residual against predicted 
pIC50 of the compounds (Figure 4) shows that the model lack 
systematic error as the propagation of residuals was observed 
on both sides of zero (Adedirin, Uzairu, Shallangwa, & 
Abechi, 2018). The other statistical validation parameters 
(Table 1, 3, 4 ) like t-statistics (t-test >2), Chi-squared (X2= 
0.0036) and Root-mean squared error (RMSE= 0.168) for error 
checking, Variance Inflation Factor (VIF<10) to check for 
possible multi-collinearity among the descriptors and 
coefficient of determination for �-randomization (cR2

p= 0.763) 
to evaluate the robustness of the model are within the threshold 
limits and also statistically significant (Alam & Khan, 2018). 
The estimated value of VIF is less than 10 for each of the 
descriptors, the maximum correlation coefficient between a 
pair of descriptors is less than 0.7 and the coefficient of 
determination for �-randomization is greater than 0.5 with low 
R2 and Q2 values. All these implied that the QSAR model 
lacked multi-co-linearity effect and reasonably orthogonal, the 
descriptors contributed significantly to the developed model 
and the model was not only robust but very stable (Tropsha et 
al., 2003). To ascertained the applicability and reliability of the 
developed model, the applicability domain of the model was 
further evaluated on the studied compounds (both the training 
set and test set) using the Euclidean based  method and 
Leverage approach (William’s Plot) procedures to detect 
which of the compounds of training set and test set are within 
or outside the applicability domain and their outliers. The 
William’s Plot (a plot of standardized residuals against the 
leverage values) as shown in Figure 5 revealed that all 
compounds are within the applicability domain with warning 
leverage h*= 0.42 except four compounds, three from the 
training set (1,12 and 20) and one from the test set (13). Hence, 
those compounds (1,12, 13 and 20) are influential compounds 
that could be due to the obvious differences in their structures 
compare with the rest of the dataset. More so, most of the 
compounds had leverage lower than the warning h* value of 
0.4, a good indication of an appreciably high applicability 
domain of the model. Furthermore, the computed Euclidean 
normalized mean distance scores for both the training set and 
test set compounds (Supplementary Table S2a and b) are found 
to be within the threshold boundaries of 0-1, showing that all 
the compounds (training set and test set) were fell within the 
acceptable domain of applicability (Alam & Khan, 2018). The 
results reported so far showed that the derived QSAR model 
displayed a good quality assurance for bioinformatic 
application of the model as a screen tool (Tropsha et al., 2003). 

 

3.1 Mechanistic evaluation and Significant of the 
Descriptors in the model  

The Penta-parametric equation derived model (Equation 

13) revealed that five molecular descriptors (AATS8v, 
GATS1e, SpMAD_Dzs, SP-7 and RDF135v) were 
significantly correlated with the antipsychotic activity of the 
studied compounds. From the equation 13, two descriptors 
(AATS8v and SpMAD_Dzs) were found to be positively 
correlated with the antipsychotic activity of the compounds. 
This means that the antipsychotic activity of the compounds 
increases, whenever the value of any of this descriptor 
increases. Conversely, the descriptor GATS1e, SP-7 and 
RDF135v were negatively correlated with the antipsychotic 
activity of the compounds, a good implication that the 
antipsychotic activity decreases as the value of the descriptors 
increases. The descriptors were subjected to Pearson’s 
correlation matrix and the percentage contribution of each 
descriptor was also computed as reported in Table 4. For each 
pair of descriptors, the value obtained for the Pearson 
correlation coefficients was less than 0.5, an indication of 
insignificant inter-correlation among the descriptors. Also, 
from the results (Table 4), the absolute t-statistics values for 
each descriptor is greater than 2 and p-values of all descriptors 
in the derived model are less than 0.05. These showed that the 
selected descriptors were good and that there is a significant 
connection between the descriptors and the inhibitory activities 
of the compounds (Tareq Hassan Khan, 2010). Furthermore, 
the computed percentage contribution for each descriptor to the 
observed inhibitory activities of the compounds are; AATS8v 
(9.68%), GATS1e (13.63%), SpMAD_Dzs (38.94%), SP-7 
(33.17%), RDF135v (4.61%). The definition of the descriptors 
is presented in Table 2. Descriptor SpMAD_Dzs and SP-7 
have demonstrated a pronounced influence on the observed 
antipsychotic bio-activity of the compounds. 

The descriptor SpMAD_Dzs is defined as Spectral 
mean absolute deviation from Barysz matrix weighted by the 
ionization state of the molecule. It is a descriptor of the rate at 
which a neutral molecular is converted to electrically charged 
chemical species. Its positive correlation with pIC50 as shown 
in the model reveals that the higher its value in a molecule, the 
better its inhibitory activity of the compound against serotonin 
transporter. Thus, it could be inferred that the presence of 
easily ionizable substituents in a molecule would enhance its 
antipsychotic bioactivity. Also, the descriptor, SP-7 is defined 
as Simple path, order 7. Its negative correlation with pIC50 as 
shown in the model implies that the lower its value in a 
molecule, the higher the inhibitory activity against serotonin 
transporter. It is a descriptor of molecular connectivity. 
Structural features such as size and branching are encoded in 
it. Its calculation is based on the representation of molecular 
structures as graphs, where atoms are represented by vertices 
and covalent chemical bonds by edges. Hence, to enhanced 
antipsychotic bioactivity, larger substituents in the compounds 
could be substituted with smaller ones so as to minimize the 
size of the compounds. 

3.2 Insilco Pharmacokinetics evaluation, Drug-likeness 
Assessment and ADMET Risk screening Results 

Physicochemical property is an important attribute that 
influences efficacy, safety, metabolism and pharmacological 
activeness of a compound and it could be evaluated by 
applying Lipinski’s rule of five and other Insilco methods. The 
result (Supplementary Table S3) shows that all the compounds 
have no more than one violation of Lipinski’s rule of five 
except compound 39 with two violations (i.e. Molecular 
weight= 522.47 and LogP= 6.51). This implies that most of the 



 

compounds are pharmacological activity and exhibit properties 
that would make them orally active drug in human (Lipinski et 
al., 1997). Also, to evaluate lipophilicity of a substance and 
determine effective lipophilicity via the distribution of a 
molecule within the body, Insilco estimation of LogP and 
LogD are very significant (Triggle & Taylor, 2006). Log P 
value greater than 2 and Log D value between 1 and 3 are 
mostly considered for a drug-like molecule to cross the blood – 
brain barrier (BBB) including CNS drugs(Waring, 2010). 
From our findings (Supplementary Table S3), all the 
compounds have LogP greater 2 but only four compounds 
(1,2,5 and 6) have the computed values for LogD less than 3, 
ADMET_Risk less than 7.0 and hERG toxicity endpoints 
(pIC50) less than 6  including Brexpiprazole (Standard Drug) 
with toxicity endpoints slightly above 6 (pIC50= 6.82). This 
suggests that these four compounds (1,2,5 and 6) possessed 
exceptional good distribution profiles, excellent potential drug 
candidates and unlikely to exhibit some hERG toxicity 
property(Lagorce et al., 2017;Gabbert and Weikard, 2013). 

 

4. CONCLUSION 

This study has offered a profound information via the 
computational modeling and Pharmacokinetic investigation. 
The developed model revealed that the antipsychotic properties 
of the compounds were influenced by AATS8v, GATS1e, 
SpMAD_Dzs, SP-7 and RDF135v molecular descriptors with 
the descriptors SpMAD_Dzs and SP-7 having a pronounced 
contributions on the observed bio-activity of the compounds 
evidenced by their highest percentage contributions and the 
direction of their influences. Likewise, the statistical diagnostic 
and the model validations showed that the derived QSAR 
model was good, predictive, robust, reliable, stable and could 
be accepted because it fulfilled the general requirements and 
the OECD Principles for model development. Similarly, the 
Insilco Pharmacokinetic evaluation, Drug-likeness Assessment 
and ADMET Risk screening portend that four of the 
compounds (1,2,5 and 6) possessed good quality assurance, 
high distribution profiles, pharmacological activeness and none 
of the four the compounds exhibit hERG toxicity. Hence, the 
obtained results would serve as a reliable blueprint for the 
structural requirements and physicochemical parameters 
needed to develop and design novel inhibitors of serotonin 
transporter as antidepressant agents with improved inhibitory 
properties. 
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 SUPPLEMENTARY MATERIALS  

 
Supplementary Table S1 - Chemical Names, Chemical Structures and Experimental pIC50 values of Phenyl 

piperidine (Data set) 

 
S/N Chemical Name                                   Chemical Structure  

Experimental pIC50 
1. 4-(((2-methoxy-5-(5-

methyl-1H-tetrazol-1-
yl)benzyl)oxy)methyl)-4-

phenylpiperidine 

 

7.432 

2. 4-(((3-(5-methyl-1H-
tetrazol-1-yl)-5-

(trifluoromethyl)benzyl)ox
y)methyl)-4-

phenylpiperidine 

 

7.155 
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3. 4-phenyl-4-(((3-
(trifluoromethyl)-5-(5-
(trifluoromethyl)-1H-

tetrazol-1-
yl)benzyl)oxy)methyl)pipe

ridine 
 

 

7.244 

4. 4-(((3-(1H-tetrazol-5-yl)-
5-

(trifluoromethyl)benzyl)ox
y)methyl)-4-

phenylpiperidine 

 

8.066 

5. 4-(((3-(1-methyl-1H-
tetrazol-5-yl)-5-

(trifluoromethyl)benzyl)ox
y)methyl)-4-

phenylpiperidine 

 

7.301 



 

6. 4-(((3-(2-methyl-2H-
tetrazol-5-yl)-5-

(trifluoromethyl)benzyl)ox
y)methyl)-4-

phenylpiperidine 

 

8.018 

7. 4-phenyl-4-(((5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)piperi

dine 

 

 

8.432 

8. 4-(3-(((4-phenylpiperidin-
4-yl)methoxy)methyl)-5-
(trifluoromethyl)phenyl)p

yridine 

 

7.796 

9. 2-(3-(((4-phenylpiperidin-
4-yl)methoxy)methyl)-5-
(trifluoromethyl)phenyl)p

yridine 

 

8.131 
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10. 4-(((3-(furan-2-yl)-5-
(trifluoromethyl)benzyl)ox

y)methyl)-4-
phenylpiperidine 

 

7.745 

11. 2-(3-(((4-phenylpiperidin-
4-yl)methoxy)methyl)-5-

(trifluoromethyl)phenyl)th
iazole 

 

 

8.387 

12. 4-(((3-(naphthalen-2-yl)-
5-

(trifluoromethyl)benzyl)ox
y)methyl)-4-

phenylpiperidine 

 

6.959 

13. 4-(((3-(naphthalen-1-yl)-
5-

(trifluoromethyl)benzyl)ox
y)methyl)-4-

phenylpiperidine 

 

6.921 

14. 4-(((2'-chloro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.194 



 

15. 4-(((2'-fluoro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.119 

16. 4-(((2'-methyl-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

7.886 

17. 4-(((2'-nitro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.456 

18. 4-(((2'-methoxy-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.377 

19. 4-(((3'-methyl-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

7.854 

20. 3'-(((4-phenylpiperidin-4-
yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-3-carbonitrile 

 

8.000 
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21. 4-(((3'-fluoro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.201 

22. 3'-(((4-phenylpiperidin-4-
yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-

biphenyl]-3-amine 

 

7.523 

23. 4-(((3'-nitro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.377 

24. 3'-(((4-phenylpiperidin-4-
yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-

biphenyl]-3-ol 

 

7.569 

25. 4-(((4',5-
bis(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

7.444 



 

26. 4-(((4'-chloro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.745 

27. methyl 3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carboxylate 

 

7.602 

28. 4-(((4'-fluoro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.824 

29. 4-(((4'-methyl-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.194 

30. N,N-dimethyl-3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-

biphenyl]-4-amine 

 

8.456 
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31. 4-(((4'-nitro-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

8.137 

32. 4-(((4'-ethoxy-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

7.854 

33. 3'-(((4-phenylpiperidin-4-
yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-

biphenyl]-4-ol 

 

7.569 

34. 4-(((4'-methoxy-5-
(trifluoromethyl)-[1,1'-

biphenyl]-3-
yl)methoxy)methyl)-4-

phenylpiperidine 

 

7.824 

35. 3'-(((4-phenylpiperidin-4-
yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

8.398 



 

36. 3-fluoro-3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

8.051 

37. 3,5-difluoro-3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

8.155 

38. 2,5-difluoro-3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

8.432 

39. 2,3,5,6-tetrafluoro-3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

7.328 

40. 3-chloro-3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

8.509 
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41. 3-methyl-3'-(((4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

 

8.569 

42. 6-(3-(((4-phenylpiperidin-
4-yl)methoxy)methyl)-5-

(trifluoromethyl)phenyl)ni
cotinonitrile 

 

8.398 

43. 3'-(((1-methyl-4-
phenylpiperidin-4-

yl)methoxy)methyl)-5'-
(trifluoromethyl)-[1,1'-
biphenyl]-4-carbonitrile 

 

8.022 

 
 
Supplementary Table S2a - Euclidean Based Applicability Domain (Training set) 
 

S/N Distance 
Score 

Mean 
Distance 

Normalized 
Mean 
Distance 

1 24.903 0.830 0.837 

2 17.964 0.599 0.388 

3 12.911 0.430 0.060 

4 15.360 0.512 0.219 

5 16.729 0.558 0.308 

6 13.763 0.459 0.115 

7 12.584 0.419 0.039 

8 13.140 0.438 0.075 

9 12.444 0.415 0.030 

10 15.145 0.505 0.205 

12 25.389 0.846 0.869 

14 11.985 0.400 0.000 

15 12.257 0.409 0.018 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table S2b - Euclidean Based Applicability Domain (Test set). 

S/N Distance 
Score 

Mean 
Distance 

Normalized 
Mean 
Distance 

11 14.002 0.467 0.131 

13 20.054 0.668 0.523 

17 17.336 0.578 0.347 

18 13.011 0.434 0.067 

21 11.931 0.398 -0.003 

26 13.148 0.438 0.075 

29 13.032 0.434 0.068 

31 16.526 0.551 0.294 

34 12.606 0.420 0.040 

36 16.275 0.542 0.278 

38 15.764 0.525 0.245 

40 17.426 0.581 0.353 

41 14.406 0.480 0.157 

 

16 19.772 0.659 0.505 

19 19.186 0.640 0.467 

20 27.411 0.914 1.000 

22 12.925 0.431 0.061 

23 17.117 0.571 0.333 

24 13.272 0.442 0.083 

25 17.966 0.599 0.388 

27 15.197 0.507 0.208 

28 12.424 0.414 0.028 

30 14.508 0.484 0.164 

32 19.409 0.647 0.481 

33 13.905 0.463 0.124 

35 13.061 0.435 0.070 

37 17.410 0.580 0.352 

39 20.524 0.684 0.554 

42 12.452 0.415 0.030 

43 13.524 0.451 0.100 
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Table S3 - Pharmacokinetic/ ADMET properties of the studied compounds with a Standard Drug (Brexpiprazole) as a control 
Compds 
S/N 

MW ADMET_Ri
sk 

S+logP S+logD LogB
B 

Pgp_Inh S+CL_Ren
al 

R
O
5 

RO5_Co
de 

hERG_pI
C50 

TOX_Ri
sk 

%Fa_h
um-
100.0 

%Fb_hum-100.0 

1 393.49 2.74 3.50 1.11 -0.30 Yes (48%) No (99%) 0 
 

4.85 1.25 81.37 52.78 

2 431.46 5.85 4.57 2.19 0.47 Yes (61%) No (99%) 1 LP 5.14 2.29 93.86 59.37 

3 485.44 7.92 5.89 3.55 0.92 Yes (61%) No (82%) 1 LP 5.17 2.69 97.21 55.60 

4 417.44 6.24 3.43 3.43 -0.18 No (96%) Yes (61%) 0 
 

4.51 2.00 19.58 17.64 

5 431.46 5.80 4.52 2.14 0.54 Yes (70%) No (99%) 1 LP 5.17 2.40 94.84 58.34 

6 431.46 5.32 4.69 2.32 0.62 Yes (97%) No (99%) 1 LP 5.12 1.86 97.55 66.86 

7 425.50 8.71 5.80 3.47 1.06 Yes (51%) No (99%) 1 LP 6.45 1.00 100.00 35.64 

8 426.49 6.43 5.10 2.77 0.95 Yes (59%) No (99%) 0 
 

6.24 1.62 99.94 44.55 

9 426.49 6.29 5.26 2.92 1.05 Yes (51%) No (99%) 1 LP 6.40 1.00 99.97 47.85 

10 415.46 8.57 5.33 2.98 0.84 Yes (97%) No (99%) 1 LP 6.06 2.30 99.97 38.93 

11 432.51 8.98 5.26 2.92 1.02 Yes (97%) No (99%) 0 
 

6.10 4.00 99.95 49.72 

12 475.56 10.25 6.74 4.46 1.14 Yes (97%) No (99%) 1 LP 6.86 2.41 91.74 25.92 

13 475.56 9.46 6.60 4.33 1.14 Yes (97%) No (95%) 1 LP 6.73 1.73 83.08 22.14 

14 459.94 9.94 6.20 3.97 1.18 Yes (97%) No (99%) 1 LP 6.61 1.85 99.99 28.92 

15 443.49 8.88 6.07 3.74 1.20 Yes (97%) No (99%) 1 LP 6.46 1.78 99.99 29.13 

16 439.52 8.24 6.04 3.70 1.00 Yes (64%) No (89%) 1 LP 6.38 1.36 100.00 26.90 

17 470.50 9.07 5.62 3.34 1.06 Yes (97%) No (99%) 1 LP 7.06 3.00 99.94 80.33 

18 455.52 7.84 5.77 3.41 1.02 Yes (97%) No (99%) 1 LP 6.37 1.48 99.99 33.63 

19 439.52 8.35 6.19 3.85 1.06 Yes (59%) No (95%) 1 LP 6.43 1.11 100.00 26.55 

20 450.51 7.76 5.46 3.19 0.73 Yes (97%) No (92%) 1 LP 6.52 1.59 80.18 24.06 

21 443.49 9.11 6.16 3.83 1.21 Yes (97%) No (99%) 1 LP 6.55 1.84 100.00 29.98 

22 440.51 8.69 5.56 3.24 0.81 Yes (97%) No (92%) 1 LP 6.40 2.49 99.89 55.03 

23 470.50 9.14 5.86 3.56 1.06 Yes (97%) No (99%) 1 LP 7.17 2.85 99.88 79.98 

24 441.50 6.63 5.36 3.29 0.88 No (69%) No (99%) 1 LP 6.57 1.69 99.76 73.11 

25 493.50 9.69 6.57 4.25 1.26 Yes (64%) No (89%) 1 LP 6.67 2.83 97.69 19.15 



 

26 459.94 9.43 6.42 4.19 1.23 Yes (97%) No (99%) 1 LP 6.70 1.34 100.00 27.46 

27 483.53 8.95 5.87 3.59 1.05 Yes (97%) No (99%) 1 LP 6.32 1.51 99.97 57.05 

28 443.49 9.03 6.22 3.88 1.21 Yes (97%) No (99%) 1 LP 6.56 1.72 100.00 28.42 

29 439.52 9.33 6.27 3.93 1.07 Yes (73%) No (95%) 1 LP 6.43 1.10 100.00 26.91 

30 468.57 9.87 6.52 4.11 1.18 Yes (97%) No (99%) 1 LP 6.70 2.36 100.00 23.60 

31 470.50 9.63 5.94 3.64 1.09 Yes (97%) No (99%) 1 LP 7.14 2.99 98.42 76.14 

32 469.55 10.62 6.31 3.93 1.09 Yes (97%) No (99%) 1 LP 6.60 1.30 100.00 25.14 

33 441.50 6.18 5.37 3.27 0.87 No (66%) No (99%) 1 LP 6.51 1.18 99.76 70.61 

34 455.52 9.36 5.97 3.61 1.08 Yes (97%) No (99%) 1 LP 6.48 1.32 99.99 30.86 

35 450.51 7.63 5.56 3.29 0.75 Yes (97%) No (92%) 1 LP 6.54 1.22 77.69 23.37 

36 468.50 8.75 5.92 3.64 1.01 Yes (97%) No (92%) 1 LP 6.59 1.69 29.74 6.70 

37 486.49 8.63 6.24 3.95 1.22 Yes (97%) No (92%) 1 LP 6.62 2.00 11.15 1.71 

38 486.49 9.09 6.16 3.88 1.17 Yes (97%) No (86%) 1 LP 6.53 2.00 19.87 3.08 

39 522.47 9.48 6.51 4.23 1.41 Yes (97%) No (82%) 2 Mw; LP 6.33 2.00 5.08 0.28 

40 484.95 10.06 6.19 4.00 0.99 Yes (97%) No (99%) 1 LP 6.76 1.72 16.05 3.71 

41 464.53 8.59 5.84 3.55 0.71 Yes (97%) No (92%) 1 LP 6.52 1.51 45.29 10.54 

42 451.50 6.73 5.03 2.73 0.72 Yes (97%) No (95%) 0 
 

6.42 1.00 99.83 31.55 

43 464.53 8.72 5.81 4.48 0.81 Yes (97%) No (95%) 1 LP 6.70 1.00 55.96 14.40 
Brexpiprazole 433.57 6.583 

 
4.725 4.396 0.22 

 
Yes (78%) 
 

No (99%) 
 

0  6.82 
 

2   

Brexpiprazole (Standard Drug) as a control  
 


