Modelagem cinética de biodiesel produzido a partir de subproduto usando hidrotalcita-hidroxiapatita como catalisador

Authors

  • Renata Nazaré Vilas Bôas Universidade Federal Rural do Rio de Janeiro, Brazil
  • Lindoval Domiciano Fernandes Universidade Federal Rural do Rio de Janeiro, Brazil https://orcid.org/0000-0002-6509-5552
  • Marisa Fernandes Mendes Universidade Federal Rural do Rio de Janeiro, Brazil

DOI:

https://doi.org/10.18540/jcecvl11iss1pp21307

Keywords:

Biodiesel. Kinetic modeling. Hydrotalcite. Hydroxyapatite. Residual raw material.

Abstract

Computer simulation is a highly effective tool for conducting comprehensive technical, economic, and environmental assessments of various processes. Commercial simulators are available that offer user-friendly interfaces and vast databases to assist in this analysis. However, it is important to highlight that when it comes to certain compounds, especially those related to biocompounds, there are still significant gaps in our understanding of the properties of these substances. Kinetic modeling of the reaction involving biodiesel derived from vegetable oil deodorization distillate (VODD) was conducted using hydrotalcite-hydroxyapatite (HT-HAp) as a catalyst, aiming to determine the reaction order and estimate the reaction rate constant. The reaction rate constant was determined by kinetic studies conducted at a constant temperature of 70 °C with a reaction time of 6 h from data obtained by the percentage conversion of ethyl esters (biodiesel). The rate constant (k) was determined from the slope of the graph of [-ln(1 - X)] as a function of time (t). However, it was possible to observe that the reaction studied behaved according to pseudo-first order kinetics.

Downloads

Download data is not yet available.

References

Bôas, R. V., de Almeida, L. D. A., & Mendes, M. F. (2022). Techno-economic evaluation of biodiesel production using by-product as raw material and hydrotalcite-hydroxyapatite as catalyst. Research, Society and Development, 11(4), e0511426977-e0511426977.

Brasil, H.; Pereira, P.; Corrêa, J.; Nascimento, L.; Rumjanek, V.; Almeida, V.; Rodrigues, E. Preparation of hydrotalcite–hydroxyapatite material and its catalytic activity for transesterification of soybean oil. Catalysis Letters, v. 147, n. 2, p. 391-399, 2017.

Coral, N., Brasil, H., Rodrigues, E., da Costa, C. E., & Rumjanek, V. (2019). Microwave-modified hydrotalcites for the transesterification of soybean oil. Sustainable Chemistry and Pharmacy, 11, 49-53.

Coral, N., Rodrigues, E., Rumjanek, V., Zamian, J. R., da Rocha Filho, G. N., & da Costa, C. E. F. (2013). Soybean biodiesel methyl esters, free glycerin and acid number quantification by 1H nuclear magnetic resonance spectroscopy. Magnetic Resonance in Chemistry, 51(2), 69-71.

Elliot, J. C. (1994). Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier Sciense, London, UK, 404p.

Lakshmi, S. B. A. V. S., Niju, S., Khadhar, M. S. B. K., & Narayanan, A. (2020). Catalyst reusability and kinetic modeling of biodiesel produced from rubber seed oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-16.

Li, Z., Ding, S., Chen, C., Qu, S., Du, L., Lu, J., & Ding, J. (2019). Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study. Energy Conversion and Management, 192, 335-345.

Navajas, A., Campo, I., Moral, A., Echave, J., Sanz, O., Montes, M., ... & Gandía, L. M. (2018). Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel, 211, 173-181.

Okullo, A.; Noah, T. (2017). Process simulation of biodiesel production from jatropha curcas seed oil. American Journal of Chemical Engineering, 5, 4, 56-63.

Reichle, W. T. (1985). Catalytic reactions by thermally activated, synthetic, anionic clay minerals. Journal of Catalysis, 94(2), 547-557.

Rezayan, A., & Taghizadeh, M. (2018). Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study. Process Safety and Environmental Protection, 117, 711-721.

Rivera, J. A., Fetter, G., Baños, L., Guzmán, J., & Bosch, P. (2009). New hydroxyapatite–hydrotalcite composites I. synthesis. Journal of Porous Materials, 16, 401-408.

Rodrigues, E., Brasil, H., Barros, T., Pereira, C., Dos Reis, M. A. L., & Almeida, O. (2018). Synthesis and characterization of hydrotalcite-hydroxyapatite material doped with carbon nanotubes and its application in catalysis of transesterification reaction. Cerâmica, 64, 166-175.

Salamatinia, B., Mootabadi, H., Hashemizadeh, I., & Abdullah, A. Z. (2013). Intensification of biodiesel production from vegetable oils using ultrasonic-assisted process: Optimization and kinetic. Chemical Engineering and Processing: Process Intensification, 73, 135-143.

Shan, R., Lu, L., Shi, Y., Yuan, H., & Shi, J. (2018). Catalysts from renewable resources for biodiesel production. Energy Conversion and Management, 178, 277-289.

Sivakumar, P., Sindhanaiselvan, S., Gandhi, N. N., Devi, S. S., & Renganathan, S. (2013). Optimization and kinetic studies on biodiesel production from underutilized Ceiba Pentandra oil. Fuel, 103, 693-698.

Vilas-Bôas, R. N., da Silva, L. L., Fernandes, L. D., Augusto, B. L., & Mendes, M. F. (2020). Study of the use of hydrotalcite–hydroxyapatite as heterogeneous catalysts for application in biodiesel using by-product as raw material. Catalysis Letters, 150, 3642-3652.

Vilas-Bôas, R. N., Lucchetti, L., Fernandes, L. D., da S. Costa, M. A., & Mendes, M. F. (2023). Preparation and Utilization of Hydroxyapatite-Supported Na and CaO–CeO2 Catalysts for Biodiesel Production Using Vegetable Oil Deodorization Distillate as Raw Material. Catalysis Letters, 153(8), 2456-2470.

Vilas Bôas, R. N., & Mendes, M. F. (2022). A review of biodiesel production from non-edible raw materials using the transesterification process with a focus on influence of feedstock composition and free fatty acids. Journal of the Chilean Chemical Society, 67(1), 5433-5444.

Yatish, K. V., Lalithamba, H. S., Suresh, R., Arun, S. B., & Kumar, P. V. (2016). Optimization of scum oil biodiesel production by using response surface methodology. Process Safety and Environmental Protection, 102, 667-672.

Downloads

Published

2025-05-11

How to Cite

Vilas Bôas, R. N., Fernandes, L. D., & Mendes, M. F. (2025). Modelagem cinética de biodiesel produzido a partir de subproduto usando hidrotalcita-hidroxiapatita como catalisador. The Journal of Engineering and Exact Sciences, 11(1), 21307. https://doi.org/10.18540/jcecvl11iss1pp21307

Issue

Section

General Articles