Classification of brain tumors in magnetic resonance images using a Convolutional Neural Network
DOI:
https://doi.org/10.18540/jcecvl11iss1pp21317Keywords:
Machine Learning, Artificial Intelligence, Multi-Class, Medical Image, Brain tumorsAbstract
The National Cancer Institute estimates that 1.5%–1.8% of malignant tumors occur in the central nervous system (CNS), with 88% affecting the brain. In 2020, this impacted approximately 11,000 Brazilians. Brain tumors are classified as primary, originating in the brain or nearby tissues, or secondary, spreading from other organs. Diagnosis of these tumors relies on imaging techniques such as MRI and CT, with MRI preferred for its non-ionizing radiation and superior spatial resolution. Recent advances in machine learning and deep learning, particularly convolutional neural networks (CNNs), have significantly improved tumor classification and diagnosis by automating feature extraction, reducing human error, and improving accuracy. Inspired by neural networks, CNNs process images through convolutional layers, enabling the detection of patterns crucial for confident medical diagnoses. In this work, we use the Kaggle dataset, which contains four classes: tumor, meningioma, pituitary, and glioma. The images were resized to 256×256 pixels and normalized to pixel values ??between 0 and 1. The model employs a simple architecture with three convolutional layers, starting with 32 filters and doubling to 128, interspersed with max-pooling layers to reduce dimensions. The outputs are fed into a dense layer with 64 neurons, ending with a softmax output for class probabilities. We achieved 95.27% accuracy, and the model outperforms other CNNs such as EfficientNet, showing high accuracy and 100% recall for tumor-free images. Challenges remain in distinguishing meningiomas, which can be explored in future work. Its simplicity and lack of advanced preprocessing make it practical for scalable medical diagnosis.
Downloads
References
Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A., & Mengko, T. R. (2019). Brain tumor classification using convolutional neural network. In World Congress on Medical Physics and Biomedical Engineering 2018: June 3-8, 2018, Prague, Czech Republic (Vol. 1) (pp. 183-189). Springer Singapore. https://doi.org/10.1007/978-981-10-9035-6_33
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 1–74. https://doi.org/10.1186/s40537-021-00444-8.
Ayadi, W., Elhamzi, W., Charfi, I., & Atri, M. (2021). Deep CNN for brain tumor classification. Neural Processing Letters, 53, 671-700. https://doi.org/10.1007/s11063-020-10398-2
Bishop, C. M., & Bishop, H. (2023). Deep learning: Foundations and concepts. Springer Nature.
Chan, H. P., Hadjiiski, L. M., & Samala, R. K. (2020). Computer?aided diagnosis in the era of deep learning. Medical Physics, 47(5), e218-e227. https://doi.org/10.1002/mp.13764
Das, S.; Aranya, O. F. M. R. R.; Labiba, N. N. Brain tumor classification using convolutional neural network. In: 2019 1st international conference on advances in science, engineering and robotics technology (ICASERT). IEEE, 2019. p. 1-5. https://doi.org/10.1109/ICASERT.2019.8934603
Ferariu, L., & Neculau, E.-D. (2021). Fusing convolutional neural networks with segmentation for brain tumor classification. In 2021 25th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 249–254). https://doi.org/10.1109/ICSTCC51502.2021.9607260
Filatov, D. and Ahmad Hassan Yar, G. N. (2022). Brain tumor diagnosis and classification via pre-trained convolutional neural networks. medRxiv, pages 2022–07.
Galldiks, N.; Langen, K.-J.; Pope, W. B. From the clinician's point of view-What is the status quo of positron emission tomography in patients with brain tumors?. Neuro-Oncology, v. 17, n. 11, p. 1434-1444, 2015. https://doi.org/10.1093/neuonc/nov118
Hussain, S., Mubeen, I., Ullah, N., Shah, S. S. U. D., Khan, B. A., Zahoor, M., Ullah, R., Khan, F. A., & Sultan, M. A. (2022). Modern diagnostic imaging technique applications and risk factors in the medical field: a review. BioMed Research International, 2022(1), 5164970. https://doi.org/10.1155/2022/5164970
INCA, Instituto Nacional de Câncer (2019). Estimativa 2020: incidência de câncer no Brasil. Instituto Nacional de Câncer José Alencar Gomes da Silva/Ministério da Saúde. https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/estimativa-2020-incidencia-de-cancer-no-brasil.pdf
Kaur, J., & Kaur, P. (2024). A systematic literature analysis of multi-organ cancer diagnosis using deep learning techniques. Computers in Biology and Medicine, 179, 108910. https://doi.org/10.1016/j.compbiomed.2024.108910
Kingma, D.P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980. https://doi.org/10.48550/arXiv.1412.6980
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2016). Imagenet classification with deep convolutional neural networks. Association for Computing Machinery, 60 (6), 84–90. https://doi.org/10.1145/3065386
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541
Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathologica, 131, 803–820. https://doi.org/10.1007/s00401-016-1545-1
Martinez-Heras, E., Grussu, F., Prados, F., Solana, E., & Llufriu, S. (2021, October). Diffusion-weighted imaging: recent advances and applications. In Seminars in Ultrasound, CT and MRI (Vol. 42, No. 5, pp. 490-506). WB Saunders. https://doi.org/10.1053/j.sult.2021.07.006
Mazurowski, M. A., Buda, M., Saha, A., & Bashir, M. R. (2019). Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on mri. Journal of magnetic resonance imaging, 49(4), 939–954. https://doi.org/10.1002/jmri.26534
Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction (pp. 379-425). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-89010-0_10
Nickparvar, M. (2021). Brain tumor mri dataset. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/2645886
Noble, R. M. (2021) Brain imaging techniques: improving the quality. Journal of Nuclear Medicine Technology, v. 49, n. 3, p. 209-214. https://doi.org/10.2967/jnmt.120.257592
Peddinti, A. S., Maloji, S., & Manepalli, K. (2021, November). Evolution in diagnosis and detection of brain tumor–review. In Journal of Physics: Conference Series (Vol. 2115, No. 1, p. 012039). IOP Publishing. https://dx.doi.org/10.1088/1742-6596/2115/1/012039
Radbruch, A., Wiestler, B., Kramp, L., Lutz, K., Bäumer, P., Weiler, M., ... & Bendszus, M. (2013). Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. European Journal of Radiology, 82(3), 552-556. https://doi.org/10.1016/j.ejrad.2012.11.002
Suh, J. H., Kotecha, R., Chao, S. T., Ahluwalia, M. S., Sahgal, A., & Chang, E. L. (2020). Current approaches to the management of brain metastases. Nature Reviews Clinical Oncology, 17(5), 279–299. https://doi.org/10.1038/s41571-019-0320-3
Villanueva-Meyer, J. E., Mabray, M. C., & Cha, S. (2017). Current clinical brain tumor imaging. Neurosurgery, 81(3), 397-415. https://doi.org/10.1093/neuros/nyx103
Wadhwa, A., Bhardwaj, A., & Verma, V. S. (2019). A review on brain tumor segmentation of MRI images. Magnetic Resonance Imaging, 61, 247-259. https://doi.org/10.1016/j.mri.2019.05.043
Xiao, H. F., Chen, Z. Y., Lou, X., Wang, Y. L., Gui, Q. P., Wang, Y., ... & Ma, L. (2015). Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging. European Radiology, 25, 3423-3430. https://doi.org/10.1007/s00330-015-3768-2
Zaccagna, F., Riemer, F., Priest, A. N., McLean, M. A., Allinson, K., Grist, J. T., ... & Gallagher, F. A. (2019). Non-invasive assessment of glioma microstructure using VERDICT MRI: correlation with histology. European Radiology, 29, 5559-5566. https://doi.org/10.1007/s00330-019-6011-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Journal of Engineering and Exact Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.