Effect of temperature and sample thickness on the hot-air drying kinetics of cupuassu pulp

Authors

DOI:

https://doi.org/10.18540/jcecvl11iss1pp21706

Keywords:

Amazon fruit, Mathematical Modeling, Mass transfer

Abstract

Cupuassu (Theobroma grandiflorum) is one of the main non-timber forest products of the Amazon biome. The pulp of the fruit is widely used in beverages, ice creams, and desserts. However, its high moisture content makes the pulp highly susceptible to spoilage. This study aimed to examine the impact of temperature (50, 60, and 70 ºC) and sample thickness (1.5, 3.0, and 4.5 mm) on the hot-air drying of cupuassu pulp to obtain a more stable product. In general, drying time can be reduced by 15% to 30% for every 10 ºC increase in air temperature at the three thickness. Additionally, when the sample thickness is reduced from 4.5 mm to 1.5 mm, drying time can be decreased by approximately 60% at the three temperature conditions. The modified Page model close agreement with experimental data (R²>0.99), showing that the drying curves exhibited an initial increasing dry rate period followed by a falling dry rate period. Furthermore, the moisture effective diffusion coefficient in the cupuassu pulp was estimated to range between 2.65×10-10 - 1.56×10-9 m2/s under the studied conditions. This research contributes to advancing knowledge about food processing, particularly those of regional interest such as cupuassu.

Downloads

Download data is not yet available.

References

AOAC - ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. (1998). Official methods of analysis of the AOAC International (14th ed.). Washington: AOAC.

Barbosa-Carvalho, A. P. P., da Silva Pena, R., & Chisté, R. C. (2024). Oven-Dried Cupuaçu and Bacuri Fruit Pulps as Amazonian Food Resources. Resources, 13(11), 153. https://doi.org/10.3390/resources13110153

Buzrul, S. (2022). Reassessment of Thin-Layer Drying Models for Foods: A Critical Short Communication. Processes, 10(1), 118. https://doi.org/10.3390/pr10010118

Chen, X. D., & Mujumdar, A. S. (2008). Drying Technologies in Food Processing. Oxford: John Wiley & Sons Ltda.

Chokngamvong, S., & Suvanjumrat, C. (2023). Study of drying kinetics and activation energy for drying a pineapple piece in the crossflow dehydrator. Case Studies in Thermal Engineering, 49, 103351. https://doi.org/10.1016/j.csite.2023.103351

Corzo, O., Bracho, N., & Alvarez, C. (2008). Water effective diffusion coefficient of mango slices at different maturity stages during air drying. Journal of Food Engineering, 87(4), 479–484. https://doi.org/10.1016/j.jfoodeng.2007.12.025

Crank, J. (1975). The Mathematics of Diffusion (SECOND EDI). New York: Oxford university press.

Demiray, E., Yazar, J. G., Aktok, Ö., Çulluk, B., Çal??kan Koç, G., & Pandiselvam, R. (2023). The Effect of Drying Temperature and Thickness on the Drying Kinetic, Antioxidant Activity, Phenolic Compounds, and Color Values of Apple Slices. Journal of Food Quality, 2023, 1–12. https://doi.org/10.1155/2023/7426793

Dissa, A. O., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying characteristics of Amelie mango (Mangifera Indica L. cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineering, 88(4), 429–437. https://doi.org/10.1016/j.jfoodeng.2008.03.008

Erbay, Z., & Icier, F. (2010). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063

Frabetti, A. C. C., de Moraes, J. O., Jury, V., Boillereaux, L., & Laurindo, J. B. (2021). Adhesion of Food on Surfaces: Theory, Measurements, and Main Trends to Reduce It Prior to Industrial Drying. Food Engineering Reviews, 13(4), 884–901. https://doi.org/10.1007/s12393-021-09286-9

Giraldo-Zuniga, A. D., Arévalo-Pinedo, A., Silva, A. F., Silva, P. F., Valdes-Serra, J. C., & Pavlak, M. C. de M. (2010). Datos experimentales de la cinética del secado y del modelo matemático para pulpa de cupuaçu (Theobroma grandiflorum) en rodajas. Ciência e Tecnologia de Alimentos, 30(1), 179–182. https://doi.org/10.1590/S0101-20612010000100027

Hosseinpour, S., Rafiee, S., & Mohtasebi, S. S. (2011). Application of Image Processing to Analyze Shrinkage and Shape Changes of Shrimp Batch during Drying. Drying Technology, 29(12), 1416–1438. https://doi.org/10.1080/07373937.2011.587620

JIANG, N., MA, J., MA, R., ZHANG, Y., CHEN, P., REN, M., & WANG, C. (2023). Effect of slice thickness and hot-air temperature on the kinetics of hot-air drying of Crabapple slices. Food Science and Technology, 43. https://doi.org/10.1590/fst.100422

Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. https://doi.org/10.1016/j.jfoodeng.2016.05.001

Khaled, A. Y., Kabutey, A., Selvi, K. Ç., Mizera, ?., Hrabe, P., & Herák, D. (2020). Application of Computational Intelligence in Describing the Drying Kinetics of Persimmon Fruit (Diospyros kaki) During Vacuum and Hot Air Drying Process. Processes, 8(5), 544. https://doi.org/10.3390/pr8050544

LEMUS?MONDACA, R., BETORET, N., VEGA?GALVÉZ, A., & LARA?ARAVENA, E. (2009). DEHYDRATION CHARACTERISTICS OF PAPAYA ( CARICA PUBENSCENS ): DETERMINATION OF EQUILIBRIUM MOISTURE CONTENT AND DIFFUSION COEFFICIENT. Journal of Food Process Engineering, 32(5), 645–663. https://doi.org/10.1111/j.1745-4530.2007.00236.x

Liu, D., Wang, Q., Hu, A., Wang, Z., Zhang, Q., & Wang, L. (2023). Optimized model of sludge drying characteristics based on an experimental study of thickness, temperature, and humidity. Journal of Cleaner Production, 429, 139540. https://doi.org/10.1016/j.jclepro.2023.139540

Nguyen, M.-H., & Price, W. E. (2007). Air-drying of banana: Influence of experimental parameters, slab thickness, banana maturity and harvesting season. Journal of Food Engineering, 79(1), 200–207. https://doi.org/10.1016/j.jfoodeng.2006.01.063

Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin?Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196

Parisotto, E. I. B., Teleken, J. T., Laurindo, J. B., & Carciofi, B. A. M. (2020). Mathematical modeling and experimental assessment of the cast-tape drying. Drying Technology, 38(8), 1024–1035. https://doi.org/10.1080/07373937.2019.1610768

Pinheiro, M. N. C., & Castro, L. M. M. N. (2023). Effective moisture diffusivity prediction in two Portuguese fruit cultivars (Bravo de Esmolfe apple and Madeira banana) using drying kinetics data. Heliyon, 9(7), e17741. https://doi.org/10.1016/j.heliyon.2023.e17741

Pombo, J. C. P., de Medeiros, H. H. B. R., & Pena, R. da S. (2020). Optimization of the spray drying process for developing cupuassu powder. Journal of Food Science and Technology, 57(12), 4501–4513. https://doi.org/10.1007/s13197-020-04487-2

Pugliese, A. G., Tomas-Barberan, F. A., Truchado, P., & Genovese, M. I. (2013). Flavonoids, Proanthocyanidins, Vitamin C, and Antioxidant Activity of Theobroma grandiflorum (Cupuassu) Pulp and Seeds. Journal of Agricultural and Food Chemistry, 61(11), 2720–2728. https://doi.org/10.1021/jf304349u

Queiroz Nazareno, L. S., De Oliveira Sá Acevedo, A. K., & Da Costa Cardoso, E. R. (2019). Characterization and quality assessment of frozen tropical fruit pulp. REVISTA AGRO@MBIENTE ON-LINE, 13, 287. https://doi.org/10.18227/1982-8470ragro.v13i0.5559

Rosa, J. S. da, Oliveira Moreira, P. I., Carvalho, A. V., & Freitas-Silva, O. (2024). Cupuassu Fruit, a Non-Timber Forest Product in Sustainable Bioeconomy of the Amazon—A Mini Review. Processes, 12(7), 1353. https://doi.org/10.3390/pr12071353

Royen, M. J., Noori, A. W., & Haydary, J. (2020). Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes, 8(12), 1562. https://doi.org/10.3390/pr8121562

Silva-Júnior, A. C., Freitas do Nascimento, J., Do Socorro Leôncio Tostes, E., & Do Socorro Santos da Silva, A. (2019). Avaliação físico-química de polpas de cupuaçu, Theobroma grandiflorum Schum, industriais e artesanais. Pubvet, 13(03). https://doi.org/10.31533/pubvet.v13n3a300.1-6

Teleken, J. T., Amorim, S. M., Rodrigues, S. S. S., de Souza, T. W. P., Ferreira, J. P., & Carciofi, B. A. M. (2025). Heat and Mass Transfer in Shrimp Hot-Air Drying: Experimental Evaluation and Numerical Simulation. Foods, 14(3), 428. https://doi.org/10.3390/foods14030428

Vega-Castro, O., Osorio-Arias, J., Duarte-Correa, Y., Jaques, A., Ramírez, C., Núñez, H., & Simpson, R. (2023). Critical Analysis of the Use of Semiempirical Models on the Dehydration of Thin-Layer Foods Based on Two Study Cases. Arabian Journal for Science and Engineering, 48(12), 15851–15863. https://doi.org/10.1007/s13369-023-07623-0

Veli?, D., Planini?, M., Tomas, S., & Bili?, M. (2004). Influence of airflow velocity on kinetics of convection apple drying. Journal of Food Engineering, 64(1), 97–102. https://doi.org/10.1016/j.jfoodeng.2003.09.016

Downloads

Published

2025-06-01

How to Cite

Castro Alves, T., Amorim, S. M. de, Wolf, M., & Teleken, J. T. (2025). Effect of temperature and sample thickness on the hot-air drying kinetics of cupuassu pulp. The Journal of Engineering and Exact Sciences, 11(1), 21706. https://doi.org/10.18540/jcecvl11iss1pp21706

Issue

Section

General Articles