Characterization of the thermal and mechanical properties of briquettes from coffee husks (Coffea arabica) with crude glycerin as binder

Authors

  • Abraão José Pereira Alcântara Department of Biomaterials Engineering, Federal University of Lavras, Brazil https://orcid.org/0009-0004-6570-4268
  • Carolina Rezende Pinto Narciso Institute of Pure and Applied Sciences, Federal University of Itajubá, Brazil https://orcid.org/0000-0002-2149-7832
  • Giovanni Aleixo Batista Department of Food Science, Federal University of Lavras, Brazil https://orcid.org/0000-0002-1287-3074
  • Paulo Fernando Trugilho Department of Forest Sciences, Federal University of Lavras, Brazil https://orcid.org/0000-0002-6230-5462
  • Pedro Castro Neto Department of Agricultural Engineering, Federal University of Lavras, Brazil
  • Lourival Marin Mendes Department of Forest Sciences, Federal University of Lavras, Brazil
  • Giovanni Francisco Rabelo Department of Engineering, Federal University of Lavras, Brazil
  • Lizzy Ayra Alcântara Veríssimo Department of Food Science, Federal University of Lavras, Brazil https://orcid.org/0000-0002-4860-612X

DOI:

https://doi.org/10.18540/jcecvl11iss1pp22190

Keywords:

Coffee husk. Crude glycerin. Briquette. Charcoal. Biochar.

Abstract

Given the growing demand for sustainable energy sources, the search for alternatives to fossil fuels has intensified, with particular emphasis on the reuse of agro-industrial waste. Among these, coffee husk (Coffea arabica), widely produced in Brazil, presents high energy potential and availability. A strategy for the valorization of this residue is briquetting, a compaction process that transforms biomass into a solid biofuel with high energy density, good combustion efficiency, and ease of transport and storage. In this context, the aim of this study was to propose a renewable fuel option and evaluate its energy potential, by means of the production and carbonization of briquettes made from coffee husks and different binder concentrations (crude glycerin). Cold briquetting was performed in a mold machined for this study. The effects of the binder concentration (0 % to 25 % w/w) on moisture, volatiles, fixed carbon and ash contents, the heating value, bulk density of briquettes, diametrical compression strength, diametral expansion, longitudinal expansion and carbonization yields was assessed, using a completely randomized design with three replicates in each treatment. Carbonization was carried out at 450 ºC. The addition of 5% (w/w) binder in the briquettes resulted in a higher compressive strength (78.99 kPa). Increases in glycerin concentration reduced the fragmentation of compacted material, but resulted in a reduction in the calorific value, increase in moisture and volatile contents, and expansion of the briquettes. The gravimetric yields were not significantly affected (p>0.05) by the addition of glycerin, but the charcoal produced from briquettes with the binder showed less fragmentation. The briquettes and charcoal produced showed potential for use in the generation of energy, and production of activated carbon and biochar.

Downloads

Download data is not yet available.

References

Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Chapter 8-biomass conversion technologies. Greenhouse gas balances of bioenergy systems, 107-139.

American Society for Testing and Materials, ASTM D1102/84(2013): standard test method for ash in wood. 2013: West Conshohocken.

American Society for Testing and Materials, ASTM D1762–84: Standard Test Method for Chemical Analysis of Wood Charcoal. 2001: West Conshohocken.

American Society for Testing and Materials, ASTM D2395-17: Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. 2017: West Conshohocken.

American Society for Testing and Materials, ASTM D5373/08: standard test methods for instrumental determination of carbon, hydrogen, nitrogen and sulfur in laboratory samples of coal. 2008: West Conshohocken. p. 504-507.

American Society for Testing and Materials, ASTM D891/95(2004): standard test methods for specific gravity, apparent, of liquid industrial chemicals. 2004: West Conshohocken.

Bala-Litwiniak, A., & Radomiak, H. (2019). Possibility of the Utilization of Waste Glycerol as an Addition to Wood Pellets. Waste and Biomass Valorization, 10(8), 2193–2199. https://doi.org/10.1007/s12649-018-0260-7

Browning, B. L. (1963). The Chemistry of Wood. Interscience.

BS 12:1958, Compressive Strength Test Specimen. 1958, British Standard Institution.

BS 373/1957, Methods of testing small clear specimens of timber. 1957, British Standard Institution.

Castello, D., & Fiori, L. (2011). Supercritical water gasification of biomass: Thermodynamic constraints. Bioresource Technology, 102(16), 7574–7582. https://doi.org/10.1016/j.biortech.2011.05.017

Chakinala, A. G., Brilman, D. W. F. (Wim), van Swaaij, W. P. M., & Kersten, S. R. A. (2010). Catalytic and Non-catalytic Supercritical Water Gasification of Microalgae and Glycerol. Industrial & Engineering Chemistry Research, 49(3), 1113–1122. https://doi.org/10.1021/ie9008293

Collard, F. X., Carrier, M., & Görgens, J. F. (2016). Fractionation of lignocellulosic material with pyrolysis processing. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 81-101). Elsevier.

Collazo-Bigliardi, S., Ortega-Toro, R., & Boix, A. C. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate polymers, 191, 205-215. https://doi.org/10.1016/j.carbpol.2018.03.022

Couto, N., Silva, V., Monteiro, E., Brito, P. S. D., & Rouboa, A. (2013). Experimental and numerical analysis of coffee husks biomass gasification in a fluidized bed reactor. Energy Procedia, 36, 591-595. https://doi.org/10.1016/j.egypro.2013.07.067

Cubero-Abarca, R., Moya, R., Valaret, J., & Tomazello Filho, M. (2014). Use of coffee (Coffea arabica) pulp for the production of briquettes and pellets for heat generation. Ciência e Agrotecnologia, 38(5), 461–470. https://doi.org/10.1590/S1413-70542014000500005

D’Avino, L., Rizzuto, G., Guerrini, S., Sciaccaluga, M., Pagnotta, E., & Lazzeri, L. (2015). Environmental implications of crude glycerin used in special products for the metalworking industry and in biodegradable mulching films. Industrial Crops and Products, 75, 29–35. https://doi.org/10.1016/j.indcrop.2015.02.043

Deiana, A. C., Granados, D. L., Petkovic, L. M., Sardella, M. F., & Silva, H. S. (2004). Use of grape must as a binder to obtain activated carbon briquettes. Brazilian Journal of Chemical Engineering, 21(4), 585–591. https://doi.org/10.1590/S0104-66322004000400007

Dietrich, F., & Gerd, W. (1989). Wood Chemistry, Ultrastructure, Reactions (2nd ed.). Walter de Gruyter.

Dou, B., Dupont, V., Williams, P. T., Chen, H., & Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613–2620. https://doi.org/10.1016/j.biortech.2008.11.037

European Committee for Standardization, EN 14774-2/09: solid biofuels: determination of moisture content: oven dry method: part 2, total moisture: simplified method 2009: Brussels.

Faria, W. S., Protásio, T. de P., Trugilho, P. F., Pereira, B. L. C., Carneiro, A. de C. O., Andrade, C. R., & Guimarães Junior, J. B. (2016). Transformation of lignocellulosic waste of coffee into pellets for thermal power generation. Coffee Science, 11, 137–147.

Gendek, A., Aniszewska, M., Mala?ák, J., & Velebil, J. (2018). Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy, 117, 173–179. https://doi.org/10.1016/j.biombioe.2018.07.025

Huang, D., Zhou, H., & Lin, L. (2012). Biodiesel: an Alternative to Conventional Fuel. Energy Procedia, 16, 1874–1885. https://doi.org/10.1016/j.egypro.2012.01.287

International Coffee Organization. (2023). Beyond Coffee: Towards a Circular Coffee Economy.

Jiang, L., Yuan, X., Xiao, Z., Liang, J., Li, H., Cao, L., Wang, H., Chen, X., & Zeng, G. (2016). A comparative study of biomass pellet and biomass-sludge mixed pellet: Energy input and pellet properties. Energy Conversion and Management, 126, 509–515. https://doi.org/10.1016/j.enconman.2016.08.035

Kaliyan, N., & Morey, R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 101(3), 1082–1090. https://doi.org/10.1016/j.biortech.2009.08.064

Kawalin Chaiyaomporn, & Orathai Chavalparit. (2010). Fuel Pellets Production from Biodiesel Waste. Environment Asia, 3, 103–110.

Kennedy, J. F., G.O. Phillips, & P.A. Williams. (1987). Wood and cellulosics: industrial utilisation, biotechnology, structure and properties. Ellis Horwood Limited.

Kim, H.-S., Kim, S., Kim, H.-J., & Yang, H.-S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1–2), 181–188. https://doi.org/10.1016/j.tca.2006.09.013

Leoneti, A. B., Aragão-Leoneti, V., & de Oliveira, S. V. W. B. (2012). Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol. Renewable Energy, 45, 138–145. https://doi.org/10.1016/j.renene.2012.02.032

Lu, D., Tabil, L. G., Wang, D., Wang, G., & Emami, S. (2014). Experimental trials to make wheat straw pellets with wood residue and binders. Biomass and Bioenergy, 69, 287–296. https://doi.org/10.1016/j.biombioe.2014.07.029

Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152–158. https://doi.org/10.1016/j.seppur.2013.02.015

Merete, W., Haddis, A., Alemayehu, E., & Ambelu, A. (2014). The potential of coffee husk and pulp as an alternative source of environmentally friendly energy. East African Journal of Sciences, 8(1), 29-36.

Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005

Norme Francaise, EN 14961-1 2010: biocombustibles solides: classes et spécifications des combustibles. 2010: Paris.

Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Wood pellets as a sustainable energy alternative in Portugal. Renewable Energy, 85, 1011–1016. https://doi.org/10.1016/j.renene.2015.07.065

Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2018). Effects of operating parameters on maize COB briquette quality. Biomass and Bioenergy, 112, 61–72. https://doi.org/10.1016/j.biombioe.2018.02.015

Parikh, J., Channiwala, S., & Ghosal, G. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84(5), 487–494. https://doi.org/10.1016/j.fuel.2004.10.010

Pilusa, T. J., Hughes, R., & Muzenda, E. (2013). Emissions analysis from combustion of eco-fuel briquettes for domestic applications. Journal of Energy in Southern Africa, 24(4), 30–36. https://doi.org/10.17159/2413-3051/2013/v24i4a3143

Protásio, T. de P., Melo, I. C. N. A. de, Guimarães Junior, M., Mendes, R. F., & Trugilho, P. F. (2013). Thermal decomposition of torrefied and carbonized briquettes of residues from coffee grain processing. Ciência e Agrotecnologia, 37(3), 221–228. https://doi.org/10.1590/S1413-70542013000300004

Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. https://doi.org/10.1016/j.rser.2013.06.017

Raghavan, J. K., & Conkle, H. N. (1991). Physical characteristic measurements for reconstituted coal pellets. In Biennial Conference-Institute of Briquetting and Agglomeration (Vol. 22, pp. 85-85). Institute of Briquetting and Agglomeration.

Riaza, J., Gibbins, J., & Chalmers, H. (2017). Ignition and combustion of single particles of coal and biomass. Fuel, 202, 650–655. https://doi.org/10.1016/j.fuel.2017.04.011

Rodriguez, C., & Gordillo, G. (2011). Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air?Steam for Partial Oxidation. Journal of Combustion, 2011(1). https://doi.org/10.1155/2011/303168

Saenger, M., Hartge, E.-U., Werther, J., Ogada, T., & Siagi, Z. (2001). Combustion of coffee husks. Renewable Energy, 23(1), 103–121. https://doi.org/10.1016/S0960-1481(00)00106-3

Sakkampang, C., & Wongwuttanasatian, T. (2014). Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel. Fuel, 115, 186–189. https://doi.org/10.1016/j.fuel.2013.07.023

Sant’Anna, M. C. S., Lopes, D. F. C., Carvalho, J. B. R., & Silva, G. F. (2012). Caracterização De Briquetes Obtidos Com Resíduos Da Agroindústria. Revista Brasileira de Produtos Agroindustriais, 14(3), 289–294. https://doi.org/10.15871/1517-8595/rbpa.v14n3p289-294

Sari, A., & Akkaya, M. (2016). Contribution of Renewable Energy Potential to Sustainable Employment. Procedia - Social and Behavioral Sciences, 229, 316–325. https://doi.org/10.1016/j.sbspro.2016.07.142

Skaf, D. W., Natrin, N. G., Brodwater, K. C., & Bongo, C. R. (2012). Comparison of Photocatalytic Hydrogen Production from Glycerol and Crude Glycerol Obtained from Biodiesel Processing. Catalysis Letters, 142(10), 1175–1179. https://doi.org/10.1007/s10562-012-0886-1

Soares, L. de S., Moris, V. A. da S., Yamaji, F. M., & Paiva, J. M. F. de. (2015). Utilização de Resíduos de Borra de Café e Serragem na Moldagem de Briquetes e Avaliação de Propriedades. Matéria (Rio de Janeiro), 20(2), 550–560. https://doi.org/10.1590/S1517-707620150002.0055

Tappi T222 om-98, Acid-insoluble lignin in wood and pulp. 1998, Tappi Press: Atlanta.

Tappi T264 cm-97, Preparation of wood for chemical analysis. 1997, Tappi Press: Atlanta.

Thompson, J. C., & He, B. B. (2006). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2), 261–265. https://doi.org/10.13031/2013.20272

Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5(6), 683–707. https://doi.org/10.1002/bbb.324

Valerio, O., Horvath, T., Pond, C., Manjusri Misra, & Mohanty, A. (2015). Improved utilization of crude glycerol from biodiesel industries: Synthesis and characterization of sustainable biobased polyesters. Industrial Crops and Products, 78, 141–147. https://doi.org/10.1016/j.indcrop.2015.10.019

Veiga, T. R. L. A., Lima, J. T., Dessimoni, A. L. D. A., Pego, M. F. F., Soares, J. R., & Trugilho, P. F. (2017). Different plant biomass characterizations for biochar production. Cerne, 23(4), 529-536. https://doi.org/10.1590/01047760201723042373

Wang, X., Tian, Q., Li, Q., Liao, C., He, M., & Liu, F. (2018). Lignin characteristics in soil profiles in different plant communities in a subtropical mixed forest. Journal of Plant Ecology, 11(4), 560–568. https://doi.org/10.1093/jpe/rtx028

White, R. H. (1987). Effect of Lignin Content and Extractives on the Higher Heating Value of Wood. Wood and Fiber Science, 446–452.

Williams, P., & Reed, A. (2006). Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass and Bioenergy, 30(2), 144–152. https://doi.org/10.1016/j.biombioe.2005.11.006

Wilson, L., John, G. R., Mhilu, C. F., Yang, W., & Blasiak, W. (2010). Coffee husks gasification using high temperature air/steam agent. Fuel processing technology, 91(10), 1330-1337. https://doi.org/10.1016/j.fuproc.2010.05.003

Yadav, A., Ansari, K. B., Simha, P., Gaikar, V. G., & Pandit, A. B. (2016). Vacuum pyrolysed biochar for soil amendment. Resource-Efficient Technologies, 2, S177–S185. https://doi.org/10.1016/j.reffit.2016.11.004

Yank, A., Ngadi, M., & Kok, R. (2016). Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass and Bioenergy, 84, 22–30. https://doi.org/10.1016/j.biombioe.2015.09.015

Downloads

Published

2025-06-20

How to Cite

Alcântara , A. J. P., Narciso, C. R. P., Batista, G. A., Trugilho, P. F., Castro Neto, P., Mendes, L. M., Rabelo, G. F., & Veríssimo, L. A. A. (2025). Characterization of the thermal and mechanical properties of briquettes from coffee husks (Coffea arabica) with crude glycerin as binder. The Journal of Engineering and Exact Sciences, 11(1), 22190. https://doi.org/10.18540/jcecvl11iss1pp22190

Issue

Section

General Articles