Characterization of the thermal and mechanical properties of briquettes from coffee husks (Coffea arabica) with crude glycerin as binder
DOI:
https://doi.org/10.18540/jcecvl11iss1pp22190Keywords:
Coffee husk. Crude glycerin. Briquette. Charcoal. Biochar.Abstract
Given the growing demand for sustainable energy sources, the search for alternatives to fossil fuels has intensified, with particular emphasis on the reuse of agro-industrial waste. Among these, coffee husk (Coffea arabica), widely produced in Brazil, presents high energy potential and availability. A strategy for the valorization of this residue is briquetting, a compaction process that transforms biomass into a solid biofuel with high energy density, good combustion efficiency, and ease of transport and storage. In this context, the aim of this study was to propose a renewable fuel option and evaluate its energy potential, by means of the production and carbonization of briquettes made from coffee husks and different binder concentrations (crude glycerin). Cold briquetting was performed in a mold machined for this study. The effects of the binder concentration (0 % to 25 % w/w) on moisture, volatiles, fixed carbon and ash contents, the heating value, bulk density of briquettes, diametrical compression strength, diametral expansion, longitudinal expansion and carbonization yields was assessed, using a completely randomized design with three replicates in each treatment. Carbonization was carried out at 450 ºC. The addition of 5% (w/w) binder in the briquettes resulted in a higher compressive strength (78.99 kPa). Increases in glycerin concentration reduced the fragmentation of compacted material, but resulted in a reduction in the calorific value, increase in moisture and volatile contents, and expansion of the briquettes. The gravimetric yields were not significantly affected (p>0.05) by the addition of glycerin, but the charcoal produced from briquettes with the binder showed less fragmentation. The briquettes and charcoal produced showed potential for use in the generation of energy, and production of activated carbon and biochar.
Downloads
References
Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Chapter 8-biomass conversion technologies. Greenhouse gas balances of bioenergy systems, 107-139.
American Society for Testing and Materials, ASTM D1102/84(2013): standard test method for ash in wood. 2013: West Conshohocken.
American Society for Testing and Materials, ASTM D1762–84: Standard Test Method for Chemical Analysis of Wood Charcoal. 2001: West Conshohocken.
American Society for Testing and Materials, ASTM D2395-17: Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. 2017: West Conshohocken.
American Society for Testing and Materials, ASTM D5373/08: standard test methods for instrumental determination of carbon, hydrogen, nitrogen and sulfur in laboratory samples of coal. 2008: West Conshohocken. p. 504-507.
American Society for Testing and Materials, ASTM D891/95(2004): standard test methods for specific gravity, apparent, of liquid industrial chemicals. 2004: West Conshohocken.
Bala-Litwiniak, A., & Radomiak, H. (2019). Possibility of the Utilization of Waste Glycerol as an Addition to Wood Pellets. Waste and Biomass Valorization, 10(8), 2193–2199. https://doi.org/10.1007/s12649-018-0260-7
Browning, B. L. (1963). The Chemistry of Wood. Interscience.
BS 12:1958, Compressive Strength Test Specimen. 1958, British Standard Institution.
BS 373/1957, Methods of testing small clear specimens of timber. 1957, British Standard Institution.
Castello, D., & Fiori, L. (2011). Supercritical water gasification of biomass: Thermodynamic constraints. Bioresource Technology, 102(16), 7574–7582. https://doi.org/10.1016/j.biortech.2011.05.017
Chakinala, A. G., Brilman, D. W. F. (Wim), van Swaaij, W. P. M., & Kersten, S. R. A. (2010). Catalytic and Non-catalytic Supercritical Water Gasification of Microalgae and Glycerol. Industrial & Engineering Chemistry Research, 49(3), 1113–1122. https://doi.org/10.1021/ie9008293
Collard, F. X., Carrier, M., & Görgens, J. F. (2016). Fractionation of lignocellulosic material with pyrolysis processing. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 81-101). Elsevier.
Collazo-Bigliardi, S., Ortega-Toro, R., & Boix, A. C. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate polymers, 191, 205-215. https://doi.org/10.1016/j.carbpol.2018.03.022
Couto, N., Silva, V., Monteiro, E., Brito, P. S. D., & Rouboa, A. (2013). Experimental and numerical analysis of coffee husks biomass gasification in a fluidized bed reactor. Energy Procedia, 36, 591-595. https://doi.org/10.1016/j.egypro.2013.07.067
Cubero-Abarca, R., Moya, R., Valaret, J., & Tomazello Filho, M. (2014). Use of coffee (Coffea arabica) pulp for the production of briquettes and pellets for heat generation. Ciência e Agrotecnologia, 38(5), 461–470. https://doi.org/10.1590/S1413-70542014000500005
D’Avino, L., Rizzuto, G., Guerrini, S., Sciaccaluga, M., Pagnotta, E., & Lazzeri, L. (2015). Environmental implications of crude glycerin used in special products for the metalworking industry and in biodegradable mulching films. Industrial Crops and Products, 75, 29–35. https://doi.org/10.1016/j.indcrop.2015.02.043
Deiana, A. C., Granados, D. L., Petkovic, L. M., Sardella, M. F., & Silva, H. S. (2004). Use of grape must as a binder to obtain activated carbon briquettes. Brazilian Journal of Chemical Engineering, 21(4), 585–591. https://doi.org/10.1590/S0104-66322004000400007
Dietrich, F., & Gerd, W. (1989). Wood Chemistry, Ultrastructure, Reactions (2nd ed.). Walter de Gruyter.
Dou, B., Dupont, V., Williams, P. T., Chen, H., & Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613–2620. https://doi.org/10.1016/j.biortech.2008.11.037
European Committee for Standardization, EN 14774-2/09: solid biofuels: determination of moisture content: oven dry method: part 2, total moisture: simplified method 2009: Brussels.
Faria, W. S., Protásio, T. de P., Trugilho, P. F., Pereira, B. L. C., Carneiro, A. de C. O., Andrade, C. R., & Guimarães Junior, J. B. (2016). Transformation of lignocellulosic waste of coffee into pellets for thermal power generation. Coffee Science, 11, 137–147.
Gendek, A., Aniszewska, M., Mala?ák, J., & Velebil, J. (2018). Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy, 117, 173–179. https://doi.org/10.1016/j.biombioe.2018.07.025
Huang, D., Zhou, H., & Lin, L. (2012). Biodiesel: an Alternative to Conventional Fuel. Energy Procedia, 16, 1874–1885. https://doi.org/10.1016/j.egypro.2012.01.287
International Coffee Organization. (2023). Beyond Coffee: Towards a Circular Coffee Economy.
Jiang, L., Yuan, X., Xiao, Z., Liang, J., Li, H., Cao, L., Wang, H., Chen, X., & Zeng, G. (2016). A comparative study of biomass pellet and biomass-sludge mixed pellet: Energy input and pellet properties. Energy Conversion and Management, 126, 509–515. https://doi.org/10.1016/j.enconman.2016.08.035
Kaliyan, N., & Morey, R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 101(3), 1082–1090. https://doi.org/10.1016/j.biortech.2009.08.064
Kawalin Chaiyaomporn, & Orathai Chavalparit. (2010). Fuel Pellets Production from Biodiesel Waste. Environment Asia, 3, 103–110.
Kennedy, J. F., G.O. Phillips, & P.A. Williams. (1987). Wood and cellulosics: industrial utilisation, biotechnology, structure and properties. Ellis Horwood Limited.
Kim, H.-S., Kim, S., Kim, H.-J., & Yang, H.-S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1–2), 181–188. https://doi.org/10.1016/j.tca.2006.09.013
Leoneti, A. B., Aragão-Leoneti, V., & de Oliveira, S. V. W. B. (2012). Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol. Renewable Energy, 45, 138–145. https://doi.org/10.1016/j.renene.2012.02.032
Lu, D., Tabil, L. G., Wang, D., Wang, G., & Emami, S. (2014). Experimental trials to make wheat straw pellets with wood residue and binders. Biomass and Bioenergy, 69, 287–296. https://doi.org/10.1016/j.biombioe.2014.07.029
Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152–158. https://doi.org/10.1016/j.seppur.2013.02.015
Merete, W., Haddis, A., Alemayehu, E., & Ambelu, A. (2014). The potential of coffee husk and pulp as an alternative source of environmentally friendly energy. East African Journal of Sciences, 8(1), 29-36.
Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005
Norme Francaise, EN 14961-1 2010: biocombustibles solides: classes et spécifications des combustibles. 2010: Paris.
Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Wood pellets as a sustainable energy alternative in Portugal. Renewable Energy, 85, 1011–1016. https://doi.org/10.1016/j.renene.2015.07.065
Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2018). Effects of operating parameters on maize COB briquette quality. Biomass and Bioenergy, 112, 61–72. https://doi.org/10.1016/j.biombioe.2018.02.015
Parikh, J., Channiwala, S., & Ghosal, G. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84(5), 487–494. https://doi.org/10.1016/j.fuel.2004.10.010
Pilusa, T. J., Hughes, R., & Muzenda, E. (2013). Emissions analysis from combustion of eco-fuel briquettes for domestic applications. Journal of Energy in Southern Africa, 24(4), 30–36. https://doi.org/10.17159/2413-3051/2013/v24i4a3143
Protásio, T. de P., Melo, I. C. N. A. de, Guimarães Junior, M., Mendes, R. F., & Trugilho, P. F. (2013). Thermal decomposition of torrefied and carbonized briquettes of residues from coffee grain processing. Ciência e Agrotecnologia, 37(3), 221–228. https://doi.org/10.1590/S1413-70542013000300004
Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. https://doi.org/10.1016/j.rser.2013.06.017
Raghavan, J. K., & Conkle, H. N. (1991). Physical characteristic measurements for reconstituted coal pellets. In Biennial Conference-Institute of Briquetting and Agglomeration (Vol. 22, pp. 85-85). Institute of Briquetting and Agglomeration.
Riaza, J., Gibbins, J., & Chalmers, H. (2017). Ignition and combustion of single particles of coal and biomass. Fuel, 202, 650–655. https://doi.org/10.1016/j.fuel.2017.04.011
Rodriguez, C., & Gordillo, G. (2011). Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air?Steam for Partial Oxidation. Journal of Combustion, 2011(1). https://doi.org/10.1155/2011/303168
Saenger, M., Hartge, E.-U., Werther, J., Ogada, T., & Siagi, Z. (2001). Combustion of coffee husks. Renewable Energy, 23(1), 103–121. https://doi.org/10.1016/S0960-1481(00)00106-3
Sakkampang, C., & Wongwuttanasatian, T. (2014). Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel. Fuel, 115, 186–189. https://doi.org/10.1016/j.fuel.2013.07.023
Sant’Anna, M. C. S., Lopes, D. F. C., Carvalho, J. B. R., & Silva, G. F. (2012). Caracterização De Briquetes Obtidos Com Resíduos Da Agroindústria. Revista Brasileira de Produtos Agroindustriais, 14(3), 289–294. https://doi.org/10.15871/1517-8595/rbpa.v14n3p289-294
Sari, A., & Akkaya, M. (2016). Contribution of Renewable Energy Potential to Sustainable Employment. Procedia - Social and Behavioral Sciences, 229, 316–325. https://doi.org/10.1016/j.sbspro.2016.07.142
Skaf, D. W., Natrin, N. G., Brodwater, K. C., & Bongo, C. R. (2012). Comparison of Photocatalytic Hydrogen Production from Glycerol and Crude Glycerol Obtained from Biodiesel Processing. Catalysis Letters, 142(10), 1175–1179. https://doi.org/10.1007/s10562-012-0886-1
Soares, L. de S., Moris, V. A. da S., Yamaji, F. M., & Paiva, J. M. F. de. (2015). Utilização de Resíduos de Borra de Café e Serragem na Moldagem de Briquetes e Avaliação de Propriedades. Matéria (Rio de Janeiro), 20(2), 550–560. https://doi.org/10.1590/S1517-707620150002.0055
Tappi T222 om-98, Acid-insoluble lignin in wood and pulp. 1998, Tappi Press: Atlanta.
Tappi T264 cm-97, Preparation of wood for chemical analysis. 1997, Tappi Press: Atlanta.
Thompson, J. C., & He, B. B. (2006). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2), 261–265. https://doi.org/10.13031/2013.20272
Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5(6), 683–707. https://doi.org/10.1002/bbb.324
Valerio, O., Horvath, T., Pond, C., Manjusri Misra, & Mohanty, A. (2015). Improved utilization of crude glycerol from biodiesel industries: Synthesis and characterization of sustainable biobased polyesters. Industrial Crops and Products, 78, 141–147. https://doi.org/10.1016/j.indcrop.2015.10.019
Veiga, T. R. L. A., Lima, J. T., Dessimoni, A. L. D. A., Pego, M. F. F., Soares, J. R., & Trugilho, P. F. (2017). Different plant biomass characterizations for biochar production. Cerne, 23(4), 529-536. https://doi.org/10.1590/01047760201723042373
Wang, X., Tian, Q., Li, Q., Liao, C., He, M., & Liu, F. (2018). Lignin characteristics in soil profiles in different plant communities in a subtropical mixed forest. Journal of Plant Ecology, 11(4), 560–568. https://doi.org/10.1093/jpe/rtx028
White, R. H. (1987). Effect of Lignin Content and Extractives on the Higher Heating Value of Wood. Wood and Fiber Science, 446–452.
Williams, P., & Reed, A. (2006). Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass and Bioenergy, 30(2), 144–152. https://doi.org/10.1016/j.biombioe.2005.11.006
Wilson, L., John, G. R., Mhilu, C. F., Yang, W., & Blasiak, W. (2010). Coffee husks gasification using high temperature air/steam agent. Fuel processing technology, 91(10), 1330-1337. https://doi.org/10.1016/j.fuproc.2010.05.003
Yadav, A., Ansari, K. B., Simha, P., Gaikar, V. G., & Pandit, A. B. (2016). Vacuum pyrolysed biochar for soil amendment. Resource-Efficient Technologies, 2, S177–S185. https://doi.org/10.1016/j.reffit.2016.11.004
Yank, A., Ngadi, M., & Kok, R. (2016). Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass and Bioenergy, 84, 22–30. https://doi.org/10.1016/j.biombioe.2015.09.015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Journal of Engineering and Exact Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.