Evaluating the Effect of Particle Gradation on Concrete's Permeability, Absorption, and Ultrasonic Properties

Autores

  • Laid Bedadi Unit UDERZA, Faculty of Technology, University of El Oued, Algeria
  • Abderrahmane Khechekhouche Laboratory (LNTDL), Faculty of Technology, University of El Oued, Algeria https://orcid.org/0000-0002-7278-2625
  • Mehdi Jahangiri Energy and Environment Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
  • Antonio Marcos de Oliveira Siqueira Universidade Federal de Viçosa, Brazil https://orcid.org/0000-0001-9334-0394
  • Julio César Costa Campos Universidade Federal de Viçosa, Brazil
  • Zakaria Rahal Department of Water Supply and Sanitation, Don State Technical University, Russian Federation
  • Ayoub Barkat Department of Landscape Protection and Environmental Geography, University of Debrecen, Hungary
  • Mohamed Naoui Research Unit of Energy Processes Environment and Electrical Systems, ENIG, University of Gabés, Tunisia

DOI:

https://doi.org/10.18540/jcecvl10iss10pp20639

Palavras-chave:

Concrete, Dune Sand, Permeability, Capillary Absorption, Ultrasonic.

Resumo

This research investigates the effects of utilizing dune sand from the Algerian Sahara, a widely available material, as a partial replacement for traditional construction sand on essential physical properties that influence concrete durability. To evaluate the concrete's performance, physical properties such as permeability, capillary absorption, and sound velocity were measured. Construction sand from the Sidi Slimane area was combined with dune sand from the Taibet region in varying proportions (0%, 5%, 10%, 15%, and 20%). Findings revealed that higher dune sand percentages positively affected dynamic acoustic test results by filling void spaces with fine particles, thereby enhancing concrete density and impermeability, which restricts water movement. Permeability tests showed reduced water infiltration with increased dune sand content, reflecting a decrease in void presence. However, capillary absorption rose with higher dune sand levels due to its capillary behavior. The influence of increasing dune sand content on absorption rates was evident, with increments of around 5.38%, 11.21%, 18.38%, and 25.11% relative to CSD0 concrete, after 48 hours of testing for CSD5, CSD10, CSD15, and CSD20, respectively. Consequently, each 5% addition of dune sand resulted in an approximate increase in absorbed water mass by 5.38%, 5.83%, 7.17%, and 6.72%, respectively. Overall, the mixture containing 20% dune sand significantly improved the acoustic and permeability properties, contributing to concrete durability, while formulations without dune sand displayed favorable capillary absorption results due to existing voids.

Downloads

Não há dados estatísticos.

Referências

Abadou, Y., Mitiche-Kettab, R., & Ghrieb, A. (2016). Ceramic waste influence on dune sand mortar performance. Construction and Building Materials, 125, 703–713.

Abu Seif, E.-S. S., Sonbul, A. R., Hakami, B. A. H., & El-Sawy, E. (2016). Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75, 1007–1022.

Ahmad, J., et al. (2022). Concrete made with dune sand: Overview of fresh, mechanical, and durability properties. Materials, 15(17), 6152.

Al-Goody, A., Güneyisi, E., Geso?lu, M., & ?pek, S. (2015). Sorptivity index of self-compacting concretes with nano-silica and fly-ash. In The 2nd International Conference of Buildings, Construction and Environmental Engineering (BCEE2-2015), 119–124.

Al-Harthy, A. S., Halim, M. A., Taha, R., & Al-Jabri, K. (2007). The properties of concrete made with fine dune sand. Construction and Building Materials, 21(8), 1803–1808.

Assié, S. (2004). Durabilité des bétons auto-plaçants. PhD Thesis, INSA Toulouse.

ASTM International. (2004). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes (ASTM C1585-04). USA.

Bedadi, L. (2019). Caractérisations des sables des oueds (Oued N’SA, Oued Mzab et Oued Rtem) pour leur valorisation dans les domaines de fabrication de béton en zone arides. PhD Thesis, Université Kasdi Merbah DE Ouargla, Algeria.

Bedadi, L., & Bentebba, M. (2017). Characteristics of sand of the Oueds in the region of Oued Righ (Oued N’SA, Oued M’ZAB and Oued Rtem) in the making of concrete in the arid regions. Energy Procedia, 119, 733–741.

Bederina, M., Bouziani, T., Khenfer, M., & Quéneudec, M. (2012). Absorption de l’eau et son effet sur la durabilité des bétons de sable allégés par ajout de copeaux de bois. In MATEC Web of Conferences, EDP Sciences, 01006.

Belferrag, A., Kriker, A., Abboudi, S., & Bi, S. T. (2016). Effect of granulometric correction of dune sand and pneumatic waste metal fibers on shrinkage of concrete in arid climates. Journal of Cleaner Production, 112, 3048–3056.

?ajka, R., & Marcalíková, Z. (2021). Experimental tests of fiber-reinforced concrete slabs and comparison of deformations using 3D graphs. Civil and Environmental Engineering, 17(1), 96–106.

Chen, W., Han, Y., Agostini, F., Skoczylas, F., & Corbeel, D. (2021). Permeability of a macro-cracked concrete: Effect of confining pressure and modelling. Materials, 14(4), 862.

Cherif, G., Mohamed, B., Salah, D. M., Siqueira, A. M. de O., & Campos, J. C. C. (2024). Assessing Delayed Collapse Risks in Load-Bearing Reinforced Concrete Walls Exposed to Parametric Fires: A Numerical Investigation. The Journal of Engineering and Exact Sciences, 10(8), 19442.

Dawood, A. O., & Jaber, A. M. (2022). Effect of dune sand as sand replacement on the mechanical properties of hybrid fiber reinforced concrete. Civil and Environmental Engineering, 18(1), 111–136.

Dimia, M. S., Belakhdar, A. R., Rabehi, R., Baghdadi, M., Siqueira, A. M. de O., & Campos, J. C. C. (2023). Effectiveness of composite jacket strengthening of reinforced concrete columns under eccentric load after fire exposure. The Journal of Engineering and Exact Sciences, 9(11), 16880–01e.

Elhag, A. B. (2020). New concepts for water well screen opening and gravel pack size. American Journal of Water Science and Engineering, 6(4), 104.

Geso?lu, M., Güneyisi, E., Khoshnaw, G., & ?pek, S. (2014). Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 73, 19–24.

Guo, Z., Qin, Y., Zhang, Y., & Li, X. (2023). Experimental investigation on shear behavior of dune sand reinforced concrete deep beams. Applied Sciences, 13(6), 3466.

Hamda, M., Guergah, C., Benmarce, A., Khechekhouche, A., Siqueira, A. M. de O., & Campos, J. C. C. (2023). Effects of Polypropylene and Date Palm Fiber Reinforcements on High Performance Concrete at Elevated Temperatures and Their Impact on Spalling Phenomena. The Journal of Engineering and Exact Sciences, 9(12), 17717.

Ho, D. W. S., & Chirgwin, G. J. (1996). A performance specification for durable concrete. Construction and Building Materials, 10(5), 375–379. https://doi.org/10.1016/0950-0618(95)00015-1

Kaab, M. Z., Khelaifa, H., Athamnia, B., Djedid, T., & Abdelkader, H. (2023). The effect of recycled rubber aggregates and dune sand of El-Oued region on the compressive strength of cementitious mortar: Optimization using Taguchi method. Stavební Obzor – Civil Engineering Journal, 32(2), 203–214.

Kurtoglu, A. E., Hussein, A. K., Gulsan, M. E., Altan, M. F., & Cevik, A. (2018). Mechanical investigation and durability of HDPE-confined SCC columns exposed to severe environment. KSCE Journal of Civil Engineering, 22, 5046–5057.

Liu, J. (2011). Etude expérimentale de la perméabilité relative des matériaux cimentaires et simulation numérique du transfert d’eau dans le béton (Doctoral dissertation, Ecole centrale de Lille).

Liu, Y., Li, Y., & Jiang, G. (2020). Orthogonal experiment on performance of mortar made with dune sand. Construction and Building Materials, 264, 120254.

Mani, M., et al. (2021). Experimental characterization of a new sustainable sand concrete in an aggressive environment. Frattura ed Integrità Strutturale, 55, 50–64.

Medina, C., De Rojas, M. S., & Frías, M. (2013). Properties of recycled ceramic aggregate concretes: Water resistance. Cement and Concrete Composites, 40, 21–29.

Melais, S., et al. (2021). Effects of coarse sand dosage on the physic-mechanical behavior of sand concrete. Frattura ed Integrità Strutturale, 56, 151–159. https://doi.org/10.3221/IGF-ESIS.56.12

Mohammed, M., Abdelouahed, K., & Allaoua, B. (2017). Compressive strength of dune sand reinforced concrete. In AIP Conference Proceedings. AIP Publishing.

Mokhtari, A., Kriker, A., Guemmoula, Y., Boukrioua, A., & Khenfer, M. (2015). Formulation and characterization of date palm fibers mortar by addition of crushed dune sand. Energy Procedia, 74, 344–350.

Norme Européenne. (2019). Essai pour Béton Frais – Partie 2: Essai d’Affaissement. Paris, France: Éditions AFNOR.

Ofori, G. (2019). Construction in developing countries: Need for new concepts. Journal of Construction in Developing Countries, 23(2), 1–6.

Öz, H. Ö. (2018). Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate. Construction and Building Materials, 166, 601–609.

Pham, A., Descantes, Y., & de Larrard, F. (2011). Determination of sieve grading curves using an optical device. Mechatronics, 21(1), 298–309.

Rabehi, M. (2014). Apport à la caractérisation de la porosité ouverte du béton d’enrobage par l’utilisation des tests d’absorption capillaire (PhD Thesis). Université Mohamed Khider Biskra.

Tafraoui, A. (2009). Contribution à la valorisation du sable de dune de l’erg occidental (Algérie) (PhD Thesis). Toulouse, INSA.

Vieira, J., Correia, J., & De Brito, J. (2011). Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates. Cement and Concrete Research, 41(5), 533–541.

Wang, L., & Bao, J. (2015). Prediction of the cracking effect on mass penetration into unsaturated concrete. In CONCREEP 10 (pp. 387–396).

Wang, Y., Li, L., An, M., Sun, Y., Yu, Z., & Huang, H. (2022). Factors influencing the capillary water absorption characteristics of concrete and their relationship to pore structure. Applied Sciences, 12(4), 2211.

Yucel, H. E. (2021). Frost resistance of layered concrete systems incorporating ECC as overlay materials. Advances in Concrete Construction, 12(3), 227–241.

Zerig, T., Aidoud, A., Belachia, M., Djedid, T., & Abbas, M. (2023). Combined sand eco-mortar reinforced with polyethylene terephthalate: Behavior and optimization using RSM method. Construction and Building Materials, 404, 133160.

Zhang, W., Hou, D., & Ma, H. (2021). Multi-scale study water and ions transport in the cement-based materials: From molecular dynamics to random walk. Microporous and Mesoporous Materials, 325, 111330.

Downloads

Publicado

2024-11-22

Como Citar

Bedadi, L., Khechekhouche, A., Jahangiri, M., Siqueira, A. M. de O., Campos, J. C. C., Rahal, Z., Barkat, A., & Naoui, M. (2024). Evaluating the Effect of Particle Gradation on Concrete’s Permeability, Absorption, and Ultrasonic Properties. The Journal of Engineering and Exact Sciences, 10(10), 20639. https://doi.org/10.18540/jcecvl10iss10pp20639

Edição

Seção

General Articles

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2 3 4 5 6 7 8 9 > >>