
63

ANALYSIS OF PEST INCIDENCE ON APPLE TREES VALIDATED BY UNSUPERVISED MACHINE 
LEARNING ALGORITHMS

Eduardo Antonio Speranza1* , Célia Regina Grego1  & Luciano Gebler2 

1 - Embrapa Digital Agriculture, Campinas, São Paulo, Brazil

2 - Embrapa Grape and Wine, Bento Gonçalves, Rio Grande do Sul, Brazil

Keywords:
Pest management
Geostatistics
Unsupervised Machine Learning
Orchards
Apples

ABSTRACT

Integrated pest control is a practice commonly used in apple orchards in southern Brazil. This 
type of management is an important tool to help improve quality and increase yields. This 
study aimed to identify areas with higher and lower incidence of aerial pests in a commercial 
apple orchard, regarding data collected from three different crops using georeferenced traps. 
Geostatistical analyses were performed, based on the modeling of semivariograms and 
spatial interpolation using the kriging method; and clustering, based on specific unsupervised 
machine learning algorithms for count data. The algorithms were selected from measures of 
stability, connectivity and homogeneity, seeking to identify areas with different incidence 
of pests that could help farmer decision making regarding insect population control using 
pesticides. The geostatistical analysis verified the presence of individual pest infestations in 
specific sites of the study area. Additionally, the analysis using machine learning allowed the 
identification of areas with incidence above the average for all analyzed pests, especially in 
the central area of the map. The process of evaluation described in this study can serve as an 
aid for risk analysis, promoting management benefits and reducing cost in the farms.
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RESUMO

O controle integrado de pragas é uma prática comumente utilizada em pomares de macieira 
no sul do Brasil. Esse tipo de manejo é uma importante ferramenta para ajudar a melhorar a 
qualidade e aumentar a produtividade. Este estudo teve como objetivo identificar áreas com 
maior e menor incidência de pragas aéreas em um pomar comercial de macieiras, a partir de 
dados coletados em três diferentes cultivos utilizando armadilhas georreferenciadas. Foram 
realizadas análises geoestatísticas, com base na modelagem de semivariogramas e interpolação 
espacial pelo método de krigagem; e agrupamento, com base em algoritmos de aprendizado 
de máquina não supervisionados específicos para dados de contagem. Os algoritmos foram 
selecionados a partir de medidas de estabilidade, conectividade e homogeneidade, buscando 
identificar áreas com diferentes incidências de pragas que pudessem auxiliar na tomada de 
decisão do agricultor quanto ao controle populacional de insetos utilizando agrotóxicos. A 
análise geoestatística verificou a presença de infestações individuais de pragas em locais 
específicos da área de estudo. Adicionalmente, a análise por aprendizado de máquina permitiu 
a identificação de áreas com incidência acima da média para todas as pragas analisadas, 
principalmente na área central do mapa. O processo de avaliação descrito neste estudo pode 
servir de auxílio para análise de risco, promovendo benefícios de manejo e redução de custos 
nas propriedades.
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INTROUCTION

The commercial production of apple 
cultivars has increased significantly in 
recent years, especially in the states of Santa 
Catarina and Rio Grande do Sul, in Brazil. 
Brazilian production is self-sufficient to fulfil 
the domestic consumption and exports to 
highly demanding markets. In this scenario, 
apple-producing companies are moving 
towards efficient production with quality and 
sustainability, minimizing the negative effects 
on health and the environment by reducing 
the use of pesticides (FIORAVANÇO & DOS 
SANTOS, 2013). 

The increase in yield and demand for fruit 
quality created the need of a system to assist in 
the management of the areas, resulting in the 
development of the Integrated Apple Production 
(IAP). IAP is a quality certification program that 
required the implementation of a system to support 
decision-making on the use of pesticides based 
on pest monitoring (KOVALESKI & RIBEIRO, 
2002). In this context, in the states of Santa Catarina 
and Rio Grande do Sul, which currently account 
for about 97% of the Brazilian apple production 
(LAZZAROTTO, 2018), most companies adopt 
the IAP system (PROTAS & SANHUEZA, 2002). 
The IAP system is considered even if, due to the 
cost of the third-party certification phase, few 
producers complete the process with the certificate, 
despite following the entire technical protocol.

AIP provides a dynamic update on the incidence 
of pests in the crop area, favoring the control of 
populations, and requires farmers to store their 
monitoring data for a minimum period of five 
years, if there is a need for extra audits by the 
program. Based on this requirement, farmers have 
the availability of geographic and temporal data 
sheets in their orchards (FIORAVANÇO & DOS 
SANTOS, 2013). These are normally used weekly 
to manage pests during the crop year, but due to 
lack of tools or guidance, they end up without 
further use, being stored both physically (field 
notebooks) and virtually (electronic spreadsheets).

Installing sampling traps in specific locations in 
each crop allows the assessment of pest incidence 
in an apple-growing field. Information over the 

years can identify the most susceptible areas and 
establish the suitable management to control the 
pest population. Consequently, these actions can 
favor investment in areas where it is possible to 
obtain higher quality fruits.

There are numerous reports in the literature on 
the use of machine learning algorithms to predict 
pest and disease infestation in agriculture. In fruit 
growing, especially apples, these investigations 
are still recent. Boniecki et al. (2015) developed 
a model based on artificial neural networks that 
allows the identification of six distinct pest species 
of apple trees, based on the input of 16 variables 
related to color and 7 variables related to shape, 
obtained through images (photos). Wrzesień et 
al. (2019) used a supervised machine-learning 
algorithm, relying on the input of standard 
meteorological data, to simulate the results of 
physical sensors installed in trees to help to detect 
apple scab disease. Despite providing promising 
results in the simulation to replace physical 
sensors, the experiments were performed on a 
single tree, thus further studies are needed so the 
application can gain scale. Brunelli et al. (2019) 
developed an internet of things (IoT) and machine 
learning system for detecting the apple moth (Cydia 
pomonella) pest in orchards. The sensor developed 
is powered by solar energy and installed on the 
trees, which can collect and pre-process images of 
the insects, allowing the in situ identification of the 
occurrence of the pest and sending messages to the 
farmer via data network. Due to the low energy and 
cost of components, analyses carried out showed 
that the system is viable and easily scalable to be 
installed in different places in the orchard.

Besides the above applications, we can obtain 
spatial pest distribution maps from data collected 
from traps installed at specific locations in the 
crop. As these data are not previously labeled, the 
classification of these maps, in relation to different 
pest incidence classes, can be performed using 
unsupervised machine learning algorithms, also 
known as clustering. These algorithms have as 
main objective to cluster data samples in a natural 
way, they use the knowledge intrinsic in the data 
and heuristics to allocate more similar sample 
pairs in relation to the application domain in the 
same cluster; and pairs of less similar samples into 
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distinct clusters (JAIN & DUBES, 1988; WITTEN 
et al., 2011).

The objective of this study was to identify, from 
the incidence of different types of aerial pests over 
three crop years in a commercial apple orchard 
located in Vacaria, Rio Grande do Sul, Brazil, areas 
with different levels of susceptibility to pests. In 
this respect, we used methods to identify the spatial 
variability and specific clustering algorithms for 
count data.

	MATERIALS AND METHODS

Study area and data collection
The dataset used in this work were obtained 

from a commercial apple orchard (Malus 
domestica) belonging to Agropecuária Schio LTDA 
(Vacaria, Rio Grande do Sul, Brazil: 50’49’13’’O; 
28’28’43’’S). The area comprised about 305 ha 
planted with cultivars Gala, Fuji and their respective 
clones. The company follows specific Integrated 
Pest Management (IPM) standards, applying 
pesticides only where the level of pests obtained, 
according to the information collected from the 
traps, is high enough to justify the operation. Two 
hundred forty-eight traps georeferenced using 
GPS RTK (Figure 1a) were available to capture 
the following pests: Brazilian apple leafroller 
(Bonagota Salubricola) and Oriental fruit moth 

(Grapholita molesta), with 94 traps each (Figure 
1b); and South American fruit fly (Anastrepha 
fraterculos), with 60 traps (Figure 1c).

The occurrence counts performed in the traps 
referenced in Figure 1a refer to the 2011/2012, 
2012/2013 and 2013/2014 crop years. Candeia et 
al. (2016) performed a binarization of this same 
dataset in their work, assigning value 1 to samples 
with a number above the minimum and zero for 
samples with a number below the minimum 
number of occurrences defined for the use of 
pesticides, according to the norms of the IPM used 
by the company. However, in this study, we used 
the absolute count to enable the application of data 
clustering algorithms in the analyses.

Geostatistical Analysis
First, using pest incidence data, we performed 

a geostatistical analysis to verify the existence of 
spatial dependence by calculating and adjusting 
the scaled semivariograms to the best correlation 
functions. The scaling of semivariograms was 
according to Vieira et al. (2010), with the purpose 
of modeling all semivariograms on the same 
semivariance and distance scale for all variables 
having the same measurement unit and were 
sampled in the same study area. The parameters 
nugget effect (Co), structural variance (C1) 
and range (a) were used in the interpolation by 

(b)

(a) (c)
Figure 1. Study area (a) and location of traps for pest species Brazilian apple leafroller (represented by 

triangles), Oriental fruit moth (represented by stars) and South American fruit fly (represented 
by diamonds); and types of traps used in the field to control Brazilian apple leafroller, Oriental 
fruit moth (b) and South American fruit fly (c)
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kriging. The scaled semivariograms were fitted 
to the spherical model, which is more suitable for 
the dataset, presenting two variance structures to 
express the spatial dependence: in the first, there 
was an increase in semivariance as a function of 
the distance to range; and in the second, a semi-
variance plateau was reached. From the fitted 
semivariograms, the dataset were interpolated using 
ordinary kriging with the adjustment parameters. 
Maps for each season were constructed using the 
QGIS software (QGIS, 2021).
	
Unsupervised machine learning

The geostatistical analysis performed allowed 
to identify the presence of spatial variability in 
the study area in relation to the incidence of pests 
for the data collected in the three referenced crop 
years. The analysis using machine learning allowed 
to verify possibilities of partitioning the study area 
into areas with higher and lower incidence of pests, 
taking as input the data collected in the three crop 
years.

This work uses samples of a specific type 
of data as input, as well as in the geostatistical 
analysis, specific clustering algorithms were used 
for count data (non-continuous). The optClust 
algorithm, a package of the same name and 
available in the R software (SEKULA et al., 2017), 
was used to identify which would be the ideal 
algorithm to generate incidence maps for each 
pest. This function allows verifying, from the data 
and statistical techniques that identify stability, 
connectivity and homogeneity indices, which 
is the best algorithm for clustering the samples, 
considering sixteen clustering algorithms. Of this 
set, six algorithms are specific to count data and 
were selected for this work, based on the definition 
of the countData=TRUE parameter. In addition 
to the algorithm, this function also suggests an 
optimal amount of clusters to classify the dataset. 
In this case, we considered two to five clusters.

Because this is a statistical and non-deterministic 
methodology, thirty runs of the optCluster function 
were performed for each pest incidence dataset. 
Thus, the choice of the combination algorithm and 
number of clusters, for each case, regarded the 
number of times this combination appears among 
the thirty tests performed. The deterministic 
annealing algorithms (UEDA & NAKANO, 1998) 
and simulated annealing (VAN LAARHOVEN & 
AARTS, 1987), both using a negative binomial 

model for data counting and available in the 
MBCluster.Seq package of the R software (SI et al., 
2014 ), were those showing the greatest adherence 
to the data sets used. These algorithms are variants 
of the Expectation Maximization (EM) algorithm 
(MOON, 1996), and because they use traditional 
models of probabilistic distributions for count 
data, they are suitable for simulating clusters for 
pest incidence datasets. However, although these 
algorithms start with random centroids, at some 
point the result may converge to a local rather than 
a global minimum. In this way, we executed each 
algorithm chosen for each data set at least ten times 
and selected the result that presented the smallest 
sum of squared errors, that is, the smallest sum 
of the distances of each sample in relation to the 
center of the cluster to which it was associated.

The comparison of the maps obtained per crop 
using geostatistics techniques with the final pest 
incidence map obtained from cluster analysis used 
the Kappa coefficient statistics (MCHUGH, 2012). 
This coefficient works as an external validation 
criterion in cluster analysis, i.e., to assess the 
agreement between labels assigned to two different 
solutions. The Kappa coefficient returns values 
between zero and one, where values close to one 
indicate high agreement between the clusters 
compared; and values close to zero indicate low 
agreement.

RESULTS AND DISCUSSION

Table 1 presents the minimum, maximum and 
median incidence values of the three pests in each 
of the three crop years, as well as their coefficients 
of variation and standard deviations of the data 
collected by the traps spread throughout the study 
area. These data show difficulties in the control of 
the pest Brazilian apple leafroller and, especially, 
the pest South American fruit fly, with an increase 
in incidence over the years. The pest Oriental fruit 
moth showed a small increase in incidence in the 
2012/2013 crop year, which practically did not 
influence the result of this experiment.

Figure 2 shows the scaled semivariograms 
generated for Brazilian apple leafroller, Oriental 
fruit moth and South American fruit fly regarding 
the three studied crop years. Spatial dependence 
was identified for Brazilian apple leafroller and 
South American fruit fly (Figure 2) with spherical 
adjustments.
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Table 1. Minimum (Min), maximum (Max), median (Med), standard deviation (SD) and variation coefficient 
(VC) values (in %) from incidence of the three pests in the three crop years evaluated

Pest / Crop 
year

2011/2012 2012/2013 2013/2014
Min Max Med SD VC Min Max Med SD VC Min Max Med SD VC

Barazilian 
apple 

leafroller
0 2 0 0.56 132 0 12 0 2.75 186 0 9 1 2.12 134

Oriental fruit 
moth

0 2 0 0.34 451 0 6 0 1.05 329 0 1 0 0.02 682

South 
American 
fruit fly

2 12 7 141.50 564 5 19 9.5 154.02 513 1 23 6 167.42 592

(a)

(b)

Eng. Agric., v.30, p. 63-74, 2022
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The spherical adjustment parameters of 
dependence for Brazilian apple leafroller (Figure 
2a) were Co=0.4, C1=0.6 and a=500 m; and 
for South American fruit fly (Figura 2b) were 
Co=0.2, C1=0.5 and a=600 m. No adjustment was 
performed for Oriental fruit moth since no increase 
in semivariance was observed with increase in 
distance (Figure 2b), thus no occurrence of spatial 
dependence. Figure 3 shows the maps created from 
values interpolated by kriging for the variables 
presenting spatial dependence. 

A higher incidence of Brazilian apple leafroller 
was found in the central area of the experimental 
field, of the mapped crops (Figure 3a, 3b and 3c). 
The maps of evolution of South American fruit fly 
showed a predominance of higher incidence in the 
lower right portion of the field (Figures 3d, 3e and 
3f). This indicates that the occurrence of these pests 
in these areas must be managed or investigated 
differently from the other areas in the field. 
Dinardo – Miranda et al. (2007) studied the spatial 
distribution of sugarcane spittlebug (Mahanarva 
fimbriolata) in sugarcane plantations and found 
aggregated distribution models considering 
differences in this distribution according to the time 
of pest development. At the beginning of the period 

of occurrence, it was not possible to determine the 
spatial dependence between the samples, which 
was carried out only from the second generation 
of the pest.

Working with localized control of stinkbugs 
in the soybean crop, Roggia et al. (2021) used 
geostatistics to map the uneven distribution of the 
stinkbug in the crops. This required the localized 
application of insecticides to avoid waste and reach 
the target that really need the pest control product, 
reducing costs and improving the usability of the 
process. The delineation of the map assumes that 
the distribution of the pest in the field does not occur 
randomly, but follows a distribution dependent on 
the space and time of each evaluation performed 
in the field. The authors performed mathematical 
calculations using the georeferenced data, 
generating interpolated data with better precision 
for the mapping, which guides decision making for 
the pest control in the field.

To obtain maps with different areas of pest 
incidence, data of the three crops for the pests 
Brazilian apple leafroller and South American 
fruit fly were clustered using the algorithms of 
deterministic annealing and simulated annealing, 
respectively, both based on the negative binomial 

(c)
Figure 2. Scaled semivariograms for pests: a) Brazilian apple leafroller, b) Oriental fruit moth and c) 

South American fruit fly, for the 2011/2012, 2012/2013 and 2013/2014 crop years. Spherical 
adjustments for Brazilian apple leafroller and South American fruit fly in the three crop cycles
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distribution for data counts. In both cases, we 
achieved the best clusterings regarding the 
subdivision into two groups. The low incidence of 
occurrences present in the data in the three cycles 

prevented the optCluster function from finding an 
ideal algorithm to separate the incidences of the 
pest Oriental fruit moth into clusters. Thus, we 
discarded the specific dataset for this pest, as it had 

   
(a)                                                                (b)

   
(c)                                                                (d)

   
(e)                                                            (f)

Figure 3. Evolution maps of pest occurrence obtained from interpolation by kriging for Brazilian apple 
leafroller: (a) 2011/2012 crop year, b) 2012/2013 crop year and c) 2013/2014 crop year; and for 
South American fruit fly: (d) 2011/2012 crop, e) 2012/2013 crop year and f) 2013/2014 crop year

Eng. Agric., v.30, p. 63-74, 2022
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already occurred in the geostatistical analysis.
The clustering obtained for the Brazilian apple 

leafroller in the form of a map (Figure 4a) shows, 
as already seen in the maps of Figure 3, a smaller 
central cluster with high incidence of the pest 
(Cluster 1 - samples in red), reaching a median 
value of four incidences per crop; and forming a 
larger cluster in the peripheral regions of the field, 
with low incidence of the pest (Cluster 2 – samples 
in green), reaching a median value of only one 
incidence per crop.

The clusplot function, available in the cluster 
package of the R software, shows the intra-cluster 
cohesion and inter-cluster separation of a cluster 
generated from an n-dimensional dataset in a 
two-dimensional space automatically generated 
from its two principal components. The clustering 
generated for Brazilian apple leafroller shows 
a satisfactory separation of the samples into two 
clusters (Figure 4b). However, this type of analysis 
only considers the input parameter pest incidence 
data from the three crop years analyzed, without 
taking into account the spatial location of the 
traps during the clustering process. Thus, when 
we return to the map in Figure 4a, we observe that 

some areas with a high incidence of pests appear 
isolated in the periphery of the field, showing a 
spatial discontinuity that can hinder the map use as 
a pest management tool.

For the clustering of the pest South American 
fruit fly the sample distribution map (Figure 5a) 
shows an even more complex spatial subdivision 
between Cluster 1 (samples in red), with a median 
incidence of 8 events per crop; and Cluster 2 (green 
samples), with a median incidence of 12.5 events 
per crop. However, the visualization of the clusters 
obtained in the two-dimensional space generated 
from the two principal incidence components also 
shows a total separation between them, indicating an 
adequate subdivision into two clusters (Figure 5b).

Using the results in Figures 4 and 5, and 
considering the existence of non-coincident points 
in the location of the traps installed for the two 
pests, a simple fusion of clusters was performed, 
joining the samples from the cluster with the 
lowest incidence of the two pests in a single cluster 
(median values ​​1 and 8) and samples with highest 
incidence (median values ​​4 and 12.5) in another 
cluster (Figure 6a). However, these new clusters, 
despite having very different median values ​​(one 

              (a)                                                                                      (b)

Figure 4. Clustering of Brazilian apple leafroller using as input data the count of events in 3 crop years: (a) 
clustering (2 clusters) displayed in map form, red dots represent samples associated with Cluster 
1 and green dots represent samples associated with Cluster 2; (b) visualization of clusters in two-
dimensional space (samples in different clusters represented by triangles or circles)
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and five, respectively), do not appear to be well 
separated in general as there are many points of 
intersection between them when viewed from the 
two principal components (Figure 6b). Although 
this result indicates certain difficulty in separating 
the study field into two unique areas with higher 
and lower overall pest incidence, it is possible 
to observe a continuous area of ​​above-average 
incidence for both pests in the central area of the map 
(Figure 6a). Triangles in the only non-intersecting 

area between the clusters (Figure 6b) represent 
these samples. Additionally, in the northern part of 
the map it is also possible to identify a continuous 
area of pest incidence, mainly influenced by South 
American fruit fly.

Using the clustered data in Figure 6a, we created 
Voronoi diagrams, dissolution and smoothing 
of polygons in the QGIS software, transforming 
the sample point map into polygon map. Thus, a 
continuous general map of the spatial distribution 

                                               (a)                                                                                   (b)
Figure 5. Clustering of South American fruit fly, using as input data the count of events in 3 crop years: 

(a) clustering (2 clusters) displayed in map form; (b) visualization of clusters in two-dimensional 
space (samples in different clusters represented by triangles or circles)

              (a)                                                                                    (b) 
Figure 6. Clustering resulting from the merging of the clusters in Figures 2 and 3: (a) clustering (two 

clusters) displayed in map form; (b) two-dimensional space clustering visualization (samples in 
different groups represented by triangles or circles)

Eng. Agric., v.30, p. 63-74, 2022
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of pests in the study field was created based on 
the analysis performed from the three crop years 
(Figure 7).

In Figure 7, areas in red (Group 1) are identified 
as having a high incidence of pests, with median 
values of 5 incidences per crop and the areas in 
green (Group 2) are identified as having a low 
incidence of pests, with median values of one 
incidence per crop. As in Figure 6, it is possible 
to identify a continuous central area and another 
smaller area located to the north of the map with a 
high incidence of pests.

The Kappa correlation coefficient was used to 
verify the agreement of the map obtained from 
the cluster analysis (Figure 7) with maps obtained 
from geostatistics (Figure 3). For this purpose, 
the five classes of each of the six maps in Figure 
3 were converted into only two classes (with 
the highest and the lowest incidence of pests) 
based on the division of values from the natural 

breaks algorithm (JENKS, 1967). Table 2 shows 
the correlation results obtained with the Kappa 
correlation coefficient.

Following the classification used for the Kappa 
correlation criterion (VIERA & GARRETT, 2005), 
for both pests, the correlation with the general map 
obtained from cluster analysis can be considered 
fair for the 2011/2012 and 2013/2014 crop years; 
and moderate, for the 2012/2013 crop year. 
Whereas no correlations with Kappa values closer 
to one (substantial or nearly perfect classification) 
shows that the clustering algorithm used was able 
to provide a more general solution that fairly 
considers the temporal dynamics of infestation 
pests observed on individual maps obtained from 
geostatistics. Additionally, the non-occurrence 
of values below 0.20 for the Kappa index also 
indicates that none of the individual maps showed 
little correlation with the unified solution.

From new georeferenced analyses of factors 

Figure 7. Suggested map for differentiated pest population management based on the incidence found in 
three crop years for the pests Brazilian apple leafroller and South American fruit fly. Areas with 
high pest incidence are shown in red (Cluster 1) and areas with low pest incidence are shown in 
green (Cluster 2)

Table 2. Kappa correlation coefficient for comparison between single pest incidence maps obtained from 
clustering analysis, with individual maps obtained from geostatistics for each pest in each crop 
year

Pest / Crop year 2011/2012 2012/2013 2013/2014

Brazilian apple leafroller 0.23 0.48 0.26

South American fruit fly 0.36 0.47 0.35

Eng. Agric., v.30, p. 63-74, 2022
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related to soil, crop and microclimate, it is 
possible to carry out a better investigation of the 
causes of the higher incidence of pests in the 
locations shown in the map of Figure 7, favoring 
a more specific management to reduce the risks 
of increased pest population in the following crop 
years. Additionally, knowledge on the temporal 
variability of the behavior of the pests analyzed 
allows the farmer, or the decision maker, to define 
better pest control strategies, aiming to manage 
orchards based on the historical risk of the areas, 
especially in conditions of resource or labor 
limited. Therefore, it is possible to direct greater 
efforts towards the areas of greater risk (red zones) 
at the expense of those of lesser risk (green zones) 
and, as the database grows, allow more clarity of 
the causes of spatial and temporal variability in the 
behavior of insects in field.

Overall, the performed geostatistical analysis 
allowed the assessment of infestations of Brazilian 
apple leafroller in the central area of the study 
field; and of South American fruit fly in the lower 
right area of the study field. The cluster analysis 
identified the areas with incidence above the 
average of both pests at the same time, mainly in 
the central area of the map, in agreement with part 
of the result obtained by the geostatistical analysis 
and verified from the analyzes using the Kappa 
coefficient. In the approach used in this study, we 
do not use the continuous maps obtained from 
geostatistics as inputs for the clustering algorithms. 
However, we can use this type of approach, widely 
used in the delineation of management zones, to 
reduce the appearance of small areas with a high 
incidence of pests observed in the map of Figure 7.

	CONCLUSION

•	 This study allowed identifying, through a 
dataset from incidence of the pests Brazilian 
apple leafroller and South American fruit fly, 
in three different crop years, areas with greater 
susceptibility to pests within a commercial 
apple orchard.

•	 The geostatistics methodology applied here 
allowed the generation of continuous individual 
maps of the incidence of different pests in 
different crop years, providing the visualization 
of their temporal evolution. However, some 

factors involving the construction of these maps 
such as the adjustment of semivariograms, 
are highly dependent on visual interpretation 
by a specialist and spatial interpolation, 
which predicts mean values ​​regarding the 
neighborhood, makes its practical use very 
restricted. On the other hand, the use of 
specific clustering algorithms in counting data 
allows for a more generalized identification 
of infested areas, aggregating in a single map 
information on the incidence of different 
pests in different crops, without requiring 
more specialist-mediated analyses. Since the 
collection and storage of pest incidence data 
is mandatory for certification programs, its 
application as metadata can be used for risk 
analysis, with management benefits and cost 
reduction to the farmer.
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