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ABSTRACT

To produce seriguela and umbu on a large scale, it is important to detect the ripening stages
and quality attributes of the fruits, to define the ideal harvest point. Thus, this study aimed to
determine, in a non-destructive way, the quality attributes and ripening stages of intact seriguela
and umbu fruits using Vis-NIR spectroscopy. A total of 150 seriguela fruits and 150 umbu
fruits were used, at different ripening stages, and subjected to spectral analysis and reference
laboratory testing to determine total soluble solids (TSS) and firmness. Spectral data were
subjected to different pre-processing techniques. Regression and classification models were
created through the statistical learning and machine learning methods. The models with the best
performance for TSS were RF (R, = 0.94) and PLSR (R?, = 0.68), and for firmness were PLSR
(R?,=0.92) and RF (R?, = 0.58), for seriguela and umbu, respectively. The model with the best
performance in the classification was LDA, with a precision greater than 95% to discriminate
the ripening stages of both fruits. Therefore, the Vis-NIR spectroscopy is a potential tool to
determine the quality attributes and ripening stages, in a non-destructive way, of intact seriguela

and umbu fruits.
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DETERMINACAO DE ATRIBUTOS DE QUALIDADE E ESTADIO DE
MATURACAO COM USO DA ESPECTROSCOPIA VIS-NIR EM FRUTOS
INTACTOS DE SERIGUELA E UMBU

RESUMO

Para a producgdo de seriguela e umbu em larga escala é importante detectar os estadios de
maturagdo e os atributos de qualidade dos frutos, a fim de definir o ponto ideal de colheita.
Portanto, o objetivo do trabalho foi determinar, de forma ndo destrutiva, os atributos de qualidade
e estadios de maturagdo de frutos intactos de seriguela e umbu com uso da espectroscopia Vis-
NIR. Foram utilizados 150 frutos de seriguela e 150 frutos de umbu, em diferentes estadios
de maturacdo, sendo esses submetidos as analises espectral e laboratorial de referéncia para
determinacdo de solidos soluveis totais (SST) e firmeza. Os dados espectrais foram submetidos
a diferentes técnicas de pré-processamento. Foram desenvolvidos modelos de regressdo e
classificagdo a partir de métodos de aprendizagem estatistica ¢ de aprendizagem de maquina. Os
modelos com melhor desempenho para SST foram RF (R?, = 0,94) e PLSR (R?, = 0,68), e para
a firmeza foram o PLSR (R?,=0,92) ¢ RF (R?, = 0,58), para seriguela e umbu, respectivamente.
O modelo de melhor desempenho na classificagdo foi o LDA com precisdo maior que 95% para
discriminar os estadios de amadurecimento de ambos os frutos. Portanto, a espectroscopia Vis-
NIR é uma ferramenta potencial para determinar atributos de qualidade e estadios de maturagao,

de forma ndo destrutiva, em frutos intactos de seriguela e umbu.
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INTRODUCTION

Brazil stands out in the production and export
of tropical fruits, having a large diversity of fruit
species (SOUZA et al., 2016). However, there are
exotic species that are little known, but have great
market potential, such as the seriguela (Spondias
purpurea L) and umbu (Spondias tuberosa)
(SANCHES et al., 2018). Seriguela and umbu
fruits are mainly consumed in natura, but they can
be used as raw material for processed products in
agroindustry (SANTOS & OLIVEIRA, 2008).

One of the main difficulties regarding the growth
and commercial development of the seriguela and
umbu crops is the harvest and postharvest of the
fruits (LIRA JUNIOR et al, 2010; BRENO et al.,
2012). These fruits are highly perishable during
postharvest handling, being prone to softening and
quickly reaching senescence (NERIS et al., 2017,
COSTA et al, 2021). The harvest of seriguela
fruits must be performed when they finish the
physiological ripening stage and begin the
maturing process (MALDONADO-ASTUDILLO
et al., 2014). On the other hand, the harvest of
umbu fruits must be conducted when they are at the
physiological ripening stage (LIMA et al., 2018).

Therefore, it is extremely important to evaluate
the fruits ripening parameters as indicators of
the ideal harvest point, so that a greater use
of production and a better acceptance of the
product in the market can be achieved (LIMA &
CASTRICINI, 2019). Nevertheless, these quality
indices are normally determined by analytical
methods that are destructive and time-consuming.
Moreover, they require reagents, and cannot be
carried out on many samples (NERIS et al., 2017).

Hence, non-destructive techniques, such as
Vis-NIR (visible near-infrared) spectroscopy, are
an alternative for the rapid and non-destructive
determination of quality attributes of fruits in
natura (GABRIELS et al., 2020). Studies using Vis-
NIR spectroscopy have shown satisfactory results
in predicting quality attributes in numerous fresh
tropical fruits, such as mangoes (SANTOS NETO
et al., 2017), oranges (CAYUELA & WEILAND,
2010; TORRES et al., 2017), grapes (COSTA et
al., 2019), and acerola cherries (MORAES et al.,
2019). However, there are no specific studies using
Vis-NIR spectroscopy to determine the quality
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attributes and ripening stages of seriguela and
umbu fruits.

As such, this study aimed to determine, in a
non-destructive way, the quality attributes and
ripening stages of intact seriguela and umbu fruits
using Vis-NIR spectroscopy.

MATERIAL AND METHODS

Acquisition of fruits

A total of 150 seriguela fruits and 150 umbu
fruits from plants located in the municipality of
Juazeiro (Juazeiro, Bahia, Brazil: Latitude: 9° 26’
187 S; Longitude: 40° 30° 19” W), and under three
different ripening stages were used: 50 fruits at the
green ripening stage; 50 fruits at the intermediate
ripening stage; and 50 fruits at the full ripening
stage. The region is characterized by a BSh climate,
according to the Koppen climate classification
(ALVARES et al., 2013), corresponding to an
semiarid climate region. The division of fruits into
three ripening stages was conducted based on the
ripening stages suggested by Sampaio et al. (2008)
and Narain ef al. (1992) for seriguela and umbu,
respectively.

Acquisition of reflectance spectra

After being harvested and separated into stages,
the fruits were subjected to spectral analysis in a
FieldSpec 3 spectrometer (Analytical Spectral
Devices, Boulder, Colorado, USA), which has a
spectral range from 350 to 2500 nm, resolution of
8 nm, reading speed of 100 ms, precision of £ 1
nm, InGaAs photodiode array, and 50 W quartz-
tungsten-halogen light source. The reflectance
spectra obtained were transformed into absorbance
values. The region between ranges from 350 to 460
nm and from 2,060 to 2,500 nm was removed due
to the excess of random noise.

Determination of postharvest quality attributes

The physicochemical quality attributes total
soluble solids (TSS) and firmness were evaluated
by analytical reference methods. TSS were
determined using a digital refractometer (Invert
Sugar Refractometer, HI 96804 Hanna), with values
expressed as °Brix. Firmness was determined using
a FR-5120 digital penetrometer (Rex Durometer),
with values expressed as N (Newton).
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Development of predictive models

Figure 1 summarizes the methods and
procedures conducted in this study for the prediction
of quality attributes and classification of the fruits
ripening stages. After the fruits were harvested,
they were subjected to acquisition of spectra and
determination of physicochemical attributes. These
data were used to develop predictive models.

Spectral data contain background and noise
information, in addition to information regarding
the samples. Hence, spectral data were subjected
to different combinations of pre-processing
for different purposes. To increase the signal/
noise ratio, smoothing with a moving average
filter (FMM) was applied to the spectral data in
various segment sizes (7, 15, 25, and 35 points).
To remove baseline displacement and inclination,
the first and second Savitzky-Golay derivatives
(GORRY, 1990; SAVITZKY & GOLAY, 1964)
were applied to the smoothed data, with a second-
order polynomial in various segment sizes (7,
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15, 25, and 35 points). A multiplicative scatter
correction (MSC) (ISAKSSON & NAES, 1988)
and a standard normal variate (SNV) (BARNES et
al., 1989) were applied to the smoothed data and
derivatives to remove the effect of light scattering.
Finally, an orthogonal signal correction (OSC) was
applied to the smoothed spectral data to remove
part of the variation that has low correlation with
the variable of interest (WOLD et al., 1998).

Principal Component Analysis (PCA) was
applied to the data to select samples with
higher explained variance, which composed the
calibration set, while the other samples composed
the prediction set. The seriguela and umbu datasets
were divided into 2/3 and 1/3 ratios, that is, 2/3
of the data were destined for calibration and cross-
validation, and 1/3 for prediction.

Regression models were built for the quality
attributes (TSS and firmness), and classification
models were built for the ripening stages (green,
intermediate, and full ripe). For this purpose,
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Figure 1. Experimental steps to build prediction and classification models. PCR: principal component
regression; PLSR: partial least squares regression; SVM: support vector machine; RF: random
forest; MLR: multiple linear regression; PCA: principal component analysis; PCA-LDA: principal
component analysis - linear discriminant analysis; PLS-DA: partial least squares discriminant
analysis; FMM: moving average filter; MSC: multiplicative scatter correction; SNV: standard
normal variate; OSC: orthogonal signal correction

Eng. Agric., v.30, p.127-141, 2022

129



SOUZA, P. A. et al.

original or pre-processed spectral data were used
as independent variables (X), whereas the quality
attributes or ripening stages of the fruits were used
as dependent variables (Y) (WOLD et al., 1984).

Statistical learning methods were used to
develop the regression models, namely the
Principal Component Regression (PCR) and
Partial Least Squares Regression (PLSR), while the
machine learning methods used were the Support
Vector Machine (SVM) and Random Forest (RF).
The NIPALS (Non-linear Iterative Partial Least-
Squares) algorithm (GELADI & KOWALSKI,
1986) consisting of 100 iterations was used to
build the PCR and PLSR models. The Sequential
Minimal Optimization (SMO) algorithm was
used to build the SVM models, and random trees
consisting of 100 iterations were used to build the
RF models.

To solve data matrix collinearity problems
and reduce the number of input spectral variables
to enable the development of Multiple Linear
Regression (MLR) models, a variable selection
(wavelengths) was performed from the graphic
analysis of the spectral variable weights of the
attributes TSS and firmness in the PLSR and PCR
models. These selected spectral variables were
used as input to the MLR models. After the MLR
models construction, the selected variables were
subjected to an analysis of variance (ANOVA), and
the models were reconstructed with the significant
variables (p-value < 0.05). In addition, from the
SVM and RF models developed with the original
and pre-processed spectra, a variable selection
was conducted with the Correlation-based Feature
Selection (Cfs) filter and subsequent reconstruction
of these models with the selected variables.

The regression model performance was
evaluated using different statistical parameters,
such as: Pearson’s coefficient of determination
(R?); root mean square error of calibration
(RMSEC); standard error of calibration (SEC); root
mean square error of cross-validation (RMSECV);
standard error of cross-validation (SECV); root
mean square error of prediction (RMSEP);
standard error of prediction (SEP); and bias. Two
parameters were used to choose the best models:
Pearson’s coefficient of determination (R?)), and
standard error, both from cross-validation (SECV)
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(GOMEZ et al., 2006). The statistical parameters
are defined by Equations (1) to (8):

-

RZ(Pearson) = %‘ (1)
RMSEC = JE—w )
SEC = J@ 3)
RMSECV = f—% “4)
SEEV — *J'lzil::':ﬁ:;_bim: )
RMSEP = JE—?>—;—“} (6)
SEP = *J'EE‘:,_':E-[:;ME:}= )
bigs = EE‘:;E:-}I} ®)
Where:

p value estimated by the calibration model,;

Vie = value estimated by the model in the cross-
validation stage;

Yi= reference value;

¥ = average of reference values;

]|

= average of predicted values;
n = number of samples at the calibration or
validation stages;

m = number of predicted samples;

Or = standard deviation of reference values;

G?: = standard deviation of predicted values; and
57 = variation of reference values.

PCA was applied as an exploratory data analysis
method to verify the possibility of clustering
samples in relation to the ripening stages. The
predictor variables were specific regions of the
spectrum, namely the visible and near-infrared
region (350-1,000 nm), first short-wave near-
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infrared region (1,001-1,830 nm), and second
short-wave near-infrared region (1,831-2,500 nm).
The classification models were developed based on
the formation of clusters.

The Principal Component Analysis - Linear
Discriminant Analysis (PCA-LDA), Partial Least
Squares Discriminant Analysis (PLS-DA), Support
Vector Machine (SVM), and Random Forest (RF)
methods were used to develop the classification
models. The performance of the classification
models was evaluated using the confusion matrix
for three ripening stages (green, intermediate, and
full ripe). From the confusion matrix, precision,
or global accuracy (GAC), sensitivity (SEN),
selectivity (SEL), and false-positive rate (FPR)
values were calculated using Equations (9) to (12):

TP+TN

GAC = ———— 100 )
"
SEN = rpipf.vmﬂ (1)
FPR = F;Pm_m{] (12)

Where TP, TN, FP, and FN correspond to the true-
positive, true-negative, false-positive, and false-
negative values, respectively.

The construction of the regression models
through the PLSR and PCR methods, as well as the
construction of the classification models through
the LDA and PLS-DA methods, was carried out
using the Unscrambler X 10.4 software (CAMO
ASA, Oslo, Norway). The construction of the

regression and classification models through the
SVM and RF methods was performed using the
Weka 3.8.4 software (University of Waikato, New
Zealand).

RESULTS AND DISCUSSION

Descriptive statistics

Table 1 indicates the descriptive statistics
of the quality attributes for the calibration and
prediction datasets in seriguela and umbu fruits.
The coefficients of variation (CV) of the quality
attributes were high, except for the TSS of umbu
fruits, which showed CV of 11.90% and 10.15%
for calibration and prediction, respectively. CV are
important variability indicators of the dataset. The
high variation in data enables the development of
robust predictive models.

Figure 2 shows the behavior of the attributes
TSS and firmness of seriguela and umbu fruits
throughout the maturing process. The TSS content
increases during the maturing process of both fruits.
This increase in TSS content can be attributed to the
hydrolysis of polysaccharides, such as starch, and
their transformation into simple sugars (SAMPAIO
et al., 2008) Nevertheless, seriguela fruits had a
sharp increase for TSS after the intermediate stage,
whereas umbu fruits showed a small increase. This
behavior occurs due to the increase in respiration
rate during the maturing process of seriguela fruits,
while in umbu fruits this does not occur (SAMPAIO
et al., 2008; MENEZES et al., 2017; SILVA et al.,
2020). The increased respiration causes the events
of increase in TSS and reduction between the acid-
sugar balance (MONTALVO-GONZALEZ et al.,
2011).

Table 1. Descriptive statistics of the quality attributes TSS and firmness for the calibration and prediction

sets in seriguela and umbu fruits

Quality Calibration Prediction
attributes Mean Maximun Minimum  SD CV (%) Mean Maximun Minimum SD  CV (%)
Seriguela
TSS (°Brix) 11.69 24.60 4.50 5.78 49.44 11.76 21.60 4.50 5.31 45.14
Firmness (N)  35.33 79.35 2.15 20.54  58.14 33.26 76.00 2.75 20.28  60.95
Umbu
TSS (°Brix) 11.49 14.30 7.80 1.37 11.90 11.55 13.70 8.30 1.17 10.15
Firmness (N)  16.94 60.85 0.35 1469  86.70 18.44 56.20 0.50 13.10  71.07
TSS = Total Soluble Solids; SD = standard deviation; CV = coefficient of variation
131
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Figure 2. Behavior of TSS and firmness in seriguela and umbu fruits throughout the maturing process

During the same process, it is also possible
to observe a loss of firmness. That occurs due to
structural and biochemical alterations in pectin,
hemicelluloses, and celluloses which constitute
the cell wall. These cellular changes include
the solubilization and depolymerization of cell
wall polysaccharides, and alterations in their
arrangement patterns, causing fruit softening
(SAMPAIO et al., 2008).

Exploratory analysis of the spectrum

The absorbance spectra for the three ripening
stages of seriguela are indicated in Figure 3A. A
distinct behavior in the visible range from 544 to
629 nm in the spectral curves of the three ripening
stages was observed. This characteristic is due to
the metabolism of chlorophylls and carotenoids
(MALDONADO-ASTUDILLO et al., 2014).

Seriguela fruits exhibit a sequence of changes
in the pericarp color during the maturing process,
consisting of three phases: phase I from dark
green to light green, phase II from light green to
orange-yellow, and phase III from orange-yellow
to purple-red. During these ripening stages, there is
areduction in chlorophyll content and a continuous
increase in carotenoids content. Therefore, the loss
of green color in fruits is due to the chlorophyll
structure degradation, and the appearance of
orange and red colors is due to the biosynthesis of
carotenoids (SAMPAIO et al., 2008).

An absorption peak was reported in the
region from 461 to 500 nm, which corresponds
to the spectral absorption region of carotenoids
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(BRENNA & BERARDO, 2004), mainly in ripe
seriguela fruits. Moreover, Figure 3A shows that,
in the wavelength range from 629 to 713 nm, the
spectral behavior at the green stage was like the
intermediate stage, differing from the spectral
behavior at the full ripe stage. This occurs because
fruits at the intermediate ripening stage still have
chlorophyll content, similarly to the green stage in
this spectral region. This, in turn, does not occur in
fruits that are in the final maturing process, in which
there was a complete degradation of chlorophyll
(SAMPAIO et al., 2008).

Figure 3B indicates the absorbance spectra for
the three ripening stages of umbu. An absorption
peak was observed in the region around 647 nm
for the three ripening stages, and there were no
differences in the shape of the spectral curves.
This behavior occurs due to characteristics of the
umbu maturing process, in which three phases
can be identified: phase I, characterized by a hard
texture and green color, phase I, characterized by
a firm texture and light green color, and phase III,
characterized by a soft texture and yellowish light
green color (NARAIN ef al., 1992), in a way that
a complete degradation of chlorophyll does not
occur in ripe fruits.

Similar absorption peaks can be observed in
Figure 3A and 3B in the near-infrared region for the
seriguela and umbu fruits. There were absorption
peaks around 980 nm, which corresponds to the
water absorption spectral range, and around 1,200
nm and 1,450 nm, corresponding to the lengthening
of C — H bonds in CH, of carbohydrates due to the
second harmonic (MOGHIMI et al., 2010).

Eng. Agric., v.30, p.127-141, 2022
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Figure 3. Raw mean absorbance spectra of (A) seriguelas; and (B) umbus for each evaluated ripening stage

(green, intermediate, and full ripe)

Predictive models of the quality attributes

Full-spectrum regression models and Cfs of
variables

For seriguela fruits, TSS were determined using
the RF model associated with OSC (35 MAF) and
Cfs, with R? of 0.96 and 0.94 for cross-validation
and prediction, respectively. Firmness was
determined using the PLSR model associated with
OSC (35 MAF), with R? 0f 0.94 and 0.92 for cross-
validation and prediction, respectively. SECV
of 1.22 °Brix and 4.86 N, and SEP of 1.34 °Brix
and 5.78 N were obtained for TSS and firmness,
respectively.

Eng. Agric., v.30, p.127-141, 2022

For umbu fruits, TSS were determined using the
PLSR model associated with OSC (35 MAF), with R
of 0.67 and 0.68 for cross-validation and prediction,
respectively. Firmness was determined using the RF
model associated with OSC (35 MAF), with R? of
0.74 and 0.58 for cross-validation and prediction,
respectively. SECV of 0.80 °Brix and 7.47 N, and
SEP of 0.68 °Brix and 8.57 N were obtained for TSS
and firmness, respectively (Table 2).

The association of regressions with the
orthogonal signal correction (OSC) provided a
satisfactory performance of the mathematical
models, both in calibration and prediction, reducing
the modeling complexity. This behavior occurred
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Table 2. Statistical learning and machine learning predictive models for TSS and firmness of intact seriguela
and umbu fruits using the full spectrum (461-2059 nm) and variable selection

Quality ) Calibration Cross-validation Prediction
. Model Pre-processing Factor
attributes ’c  RMSEC SEC R?v RMSECV SECV R?*»® RMSEP SEP
Seriguela
PLSR OSC (35 MAF) 1 0.96 1.13 1.14  0.96 1.16 1.16 0.92 .52 1.54
TSS PCR  OSC (35 MAF) 1 0.96 1.13 1.14  0.96 1.16 1.16 092 1.52 1.53
(°Brix) SVM Raw + Cfs * 0.95 1.26 1.26  0.96 1.29 1.29 093 141 142
RFR  OSC(35MAF)+Cfs * 0.99 0.48 0.48 0.96 1.22 122 094 1.38  1.34
PLSR OSC (35 MAF) 1 0.95 4.74 477 094 4.83 486 092 590 578
Firmness PCR  OSC (35 MAF) 1 0.95 4.74 477 094 4.83 486 092 590 5.78
N SVM  raw + Cfs * 0,92 5.98 6.01 091 6.08 6.07 092 6.17 5389
RFR  OSC(35MAF)+Cfs * 0.99 1.88 1.89 094 5.07 508 092 577 571
Umbu
PLSR OSC (35 MAF) 7 0.83 0.56 0.57 0.67 0.79 080 0.68 224 0.68
TSS PCR  OSC (35 MAF) 1 0.48 0.98 098 0.46 1.00 1.01 044 1.89 0.88
(°Brix) SVM  OSC (35 MAF) * 0,87 0.49 0.49 0.57 0.91 091 058 091 0.87
RFR  OSC (35 MF) * 0,94 0.38 038 043 1.04 1.0s 044 089 0.89
PLSR OSC (35 MAF) 1 0.72 7.80 7.84 0.70 7.97 8.01 059 24.63 849
Firmness PCR  OSC (35 MAF) 1 0.72 7.80 7.84 0.70 7.97 801 059 2463 849
N) SVM  Raw * 0,79 6.85 6.88 0.62 9.03 9.07 059 842 849
RFR  OSC (35 MAF) * 0,96 2.98 299 0.74 7.44 747 058 849 857

R ? = Coefficient of determination of Calibration; R > = Coefficient of determination of Cross-validation; sz = Coefficient of determination of

Prediction; RMSEC = Root Mean Square Error of Calibration; SEC = Standard Error of Calibration; RMSECV = Root Mean Square Error of

Cross-validation; SECV = Standard Error of Cross-validation; RMSEP = Root Mean Square Error of Prediction; SEP = Standard Error of Prediction

because the OSC removed spectral signals that are
not related to the quality attributes (RAMBO et al.,
2013; HEMRATTRAKUN et al., 2021).

The statistical learning models (PLSR and
PCR) performed similarly to the machine learning
models (SVM and RF). However, the PLSR
and PCR models have a lower computational
complexity and cost than the SVM and RF models,
while the predictive modeling is more efficient in
this case (WOLD et al., 1984). Thus, predictive
models for determining the quality attributes of
intact seriguela and umbu fruits using Vis-NIR
spectroscopy in the spectral range from 461 to
2,059 nm are robust.

MLR models with variable selection

From the graphic analysis of spectral variable
weights, provided by the PLSR model, a probable
association between specific wavelengths and
quality attributes was observed (Figure 4). From
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the loading curves of the independent variables
and ANOVA, with a p-value of less than 5%, the
following wavelengths were selected: 471, 520,
1400, 1423, 1426, 1456, 1465, 1660 nm for TSS in
seriguela; 977, 1009, 1016, 1110, 1133, 1189, 1329,
1522, 1543, 1679, 1809, 1846 nm for firmness in
seriguela; 645, 778, 956, 963, 1043, 1198, 1315,
1472, 1594, 1733, 1788, 1816, 1849, 1884, 1954,
1989, 1990, 2025 nm for TSS in umbu; and 470,
504, 644, 971, 980, 1143, 1525, 1652, 1667, 1750
e 1953 nm for firmness in umbu.

For TSS, in seriguela and umbu fruits, the
wavelengths in the visible region were related to
photosynthetic pigments (MA et al., 2021), and
in the near-infrared region, the spectral signatures
were associated with the lengthening of O — H
bonds of water, organic acids, and sugars due to the
third OH overtone (GODDU & DELKER, 1960;
MOGHIMI et al., 2010).

For firmness, in seriguela and umbu fruits, the

Eng. Agric., v.30, p.127-141, 2022
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Figure 4. Loading plots concerning spectral variables of seriguela fruits for (A) TSS; (B) firmness; and

umbu fruits for (C) TSS; and (D) firmness

wavelengths in the near-infrared are related to
the lengthening of C — H covalent bonds of the
CH, group due to the first and second harmonics
(FU et al, 2008). Fruit firmness is a cohesive
force measurement between the pectin, which
are substances present in the middle lamellas,
and exert a cementing function between the cell
walls. As maturing occurs, these compounds are
degraded, causing fruit softening (ENGELSEN et
al., 1998). Confirming these results, Bizzani et al.
(2017) reported that pectin is responsive to energy
emitted in some spectral regions in the range from

Eng. Agric., v.30, p.127-141, 2022

1,000 to 2,500 nm (near-infrared region).

Table 3 shows the performance parameters of
the MLR models based on the spectral signatures
selected for the quality attributes. Regarding
seriguela fruits, both for TSS and firmness, the
MLR models reached R? above 0.94 and 0.91 for
cross-validation and prediction, respectively. SECV
of 1.11 °Brix and 4.89 N, and SEP of 1.52 °Brix
and 6.04 N were obtained for TSS and firmness,
respectively. For umbu fruits, the MLR models
achieved performance for TSS and firmness with
R? above 0.63 in cross-validation, and above 0.55
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in prediction. SECV of 0.84 °Brix and 7.62 N, and
SEP of 0.82 °Brix and 8.52 N were obtained for
TSS and firmness, respectively.

These results were satisfactory and are like
those found by Li ef al. (2013), who developed
PLSR prediction models with R? between 0.70 and
0.87 to quantify TSS and firmness in pears, and
Costa et al. (2019), who developed MLR models
with R? greater than 0.90 to quantify TSS in grapes,
both using Vis-NIR spectroscopy.

Variable selection was important to make the
modeling process less complex, and increase the
prediction performance using more specific and
relevant wavelengths for the characterization of
physicochemical parameters (LUO ef al., 2012).

Classification models of ripening stages

Principal component analysis (PCA)

The pretreatment that provided the best results
for PCA was the OSC (35 MAF), explaining
100% of spectral variability in the first principal
component for the seriguela and umbu fruits

(Figure 5). The existence of an overlap is observed
between the intermediate ripe fruits, and the green
and full ripe fruits. That occurs due to a gradual
change in pericarp color of seriguelas during
the ripening process. Fruits at the intermediate
ripening stage are in a physiological phase between
green and ripe, and their biochemical and cellular
constituents are in a transition state (VLAIC et al.,
2018), which makes it difficult for samples at the
intermediate ripening stage to be clustered into a
well-defined class.

PCA in the visible region (Figure 6A) reveals
the same explained variance as PCA for the full
spectrum in the first two principal components. For
the ranges of near-infrared 1 and 2 (Figure 6B and
6C), in turn, there was a reduction in the explained
spectral variation in comparison with PCA for the
full spectrum. This result reinforces the importance
of the visible spectral region for discriminating the
ripening stages of seriguelas. For umbu fruits, PCA
in the near-infrared region 1 showed the highest
explained variance (Figure 6E), when compared

Table 3. Multiple linear regression models for the quality attributes TSS and firmness of seriguela and

umbu fruits using selected spectral signatures

Quality . Calibration Cross-validation Prediction
. Model Pre-processing
attributes R¢ RMSEC SEC R%v RMSECV SECV R’ RMSEP SEP
Seriguela
TSS (°Brix) ~ MLR  OSC (35 MAF) 0.97 1.05 1.00  0.96 1.11 .11 092 1.51 1.52
Firmness (N) MLR OSC (35 MAF) 0.96 4.58 429 094 4.89 489 091 6.09 6.04
Umbu
TSS (°Brix)  MLR OSC (35 MAF) 0.75 0.75 0.68  0.63 0.84 0.84 055 2.10 0.82
Firmness (N) MLR OSC (35 MAF) 0.78 7.24 6.82  0.73 7.62 7.62 058 3259 852

R > = Coefficient of determination of Calibration; R_? = Coefficient of determination of Cross-validation; sz = Coefficient of determination of
Prediction; RMSEC = Root Mean Square Error of Calibration; SEC = Standard Error of Calibration; RMSECV = Root Mean Square Error of
Cross-validation; SECV = Standard Error of Cross-validation; RMSEP = Root Mean Square Error of Prediction; SEP = Standard Error of Prediction
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Figure 5. Principal component analysis of the full spectrum for the ripening stages in (A) seriguela and (B)
umbu
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to other spectral regions (Figure 6D and 6F). This
result is due to biochemical reactions throughout

the ripening stages

of the fruits.

Supervised classification
Table 4 shows the best supervised classification
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models for the discrimination of ripening stages
in intact seriguela and umbu fruits. The LDA
model provided the best discrimination of the
three ripening stages with a precision of 97.78%
and 95.31%, and false-positive rate of 1.67% and
3.32%, for seriguela and umbu, respectively.
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Figure 6. Principal component analysis for the ripening stages of seriguelas in the (A) visible (350-1,000
nm); (B) near-infrared 1 (1,001-1,830 nm); (C) near-infrared 2 (1,831-2,500); and umbu in the
(D) visible (350-1,000 nm); (E) near-infrared 1 (1,001-1,830 nm); and (F) near-infrared 2 (1,831-

2,500)

Table 4. Performance of the classification models for the discrimination of ripening stages of seriguela and
umbu using the full spectrum (461 to 2,059 nm) and variable selection

Model Pre-processing Precision Sensitivity Selectivity FPR
Seriguela
LDA OSC (35 MAF) 97.78 96.67 98.33 1.67
PLS-DA 35 MAF 94.82 92.66 96.05 3.95
SVM OSC (35 MAF) + Cfs 96.00 93.75 97.06 2.20
RF OSC (35 MAF) + Cfs 94.00 93.33 94.29 3.40
Umbu

LDA SNV (25 MAF) 95.31 93.53 96.68 3.32
PLS-DA SNV (25 MAF) 86.01 76.17 88.23 11.77
SVM Raw 78.00 78.95 92.31 10.10
RF Raw 66.00 63.64 86.36 18.40

FPR = false-positive rate

Eng. Agric., v.30, p.127-141, 2022
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The classifiers performances are like those
reported by Costa et al. (2019), who while
studying Vis-NIR spectroscopy in red wine grapes
at different ripening stages, found a precision of
93.15% for the PLS-DA model. The discrimination
of ripening stages of seriguelas is related to
colorimetric alterations in the peel, due to the
degradation of chlorophyll and concentration of
pigment substances. In this sense, the visible
spectral region is associated with the transition
of electrons, which can be used to determine the
color of the samples (XIAO et al, 2018). For
umbu fruits, a reduction in the performance of
the classification models is observed. This occurs
because the maturing process does not cause an
expressive peel color change, maintaining a less
intense green color in the fruits at the full ripening
stage, in relation to fruits at the green ripening
stage (NARAIN et al., 1992).

Thus, the classification models allowed to
discriminate the ripening stages of seriguela and
umbu fruits using Vis-NIR spectroscopy, with the
visible spectral region having a greater contribution.

CONCLUSION

e The predictive regression models with the best
performance for seriguela fruits were the RF
and PLSR for TSS and firmness, respectively
(R*>92%), and for umbu fruits were the PLSR
and RF for TSS and firmness, respectively (R2
>0.68%).

e The construction of supervised classification
models allowed to discriminate the three
different ripening stages for the seriguela
and umbu fruits, in which the LDA was the
classification model that showed the most
satisfactory result, with a precision above 95%.

e Therefore, the Vis-NIR spectroscopy is a
potential tool to determine the quality attributes
and ripening stages, in a non-destructive way,
of intact seriguela and umbu fruits.
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