Revista Engenharia na Agricultura

Viçosa, MG, DEA/UFV - DOI: 10.13083/reveng.v30i1.13621
v.30, p.142-155, 2022

CHARACTERIZATION AND FREQUENCY ANALYSIS OF LONG-TERM MAXIMUM RAINFALL FROM SÃO MARTINHO, SANTA CATARINA, BRAZIL

Álvaro José Back ${ }^{\text {* (iD }}$ \& Luísa Back ${ }^{2}$ (iD)
1 - Agricultural Research and Rural Extension Company of Santa Catarina, Urussanga, Santa Catarina, Brazil
2 - Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

Keywords:

Heavy rains
Probability
IDF equation
Hydraulic works

Palavras-chave:

Chuvas intensas
Probabilidade
Equação IDF
Obras hidráulicas

Abstract

The study of the frequency of intense rainfall is important for agricultural and environmental planning and the dimensioning of drainage works. This study aimed to characterize and determine the relationships of intensity, duration, and frequency of long-term rainfall in São Martinho, Santa Catarina. The series of annual maximums lasting from one to ten days, observed in the period from 1977 to 2020, were determined. The probability distributions Gumbel, GEV, LogNormal with two parameters, Log-Normal with three parameters, Pearson type III, and LogPearson Type III were evaluated. The parameters were estimated by the method of moments, maximum likelihood method, method of L-Moments, and for the Gumbel distribution, the Chow method was used. The Kolmogorov-Smirnov, Anderson-Darling, and Filliben fitting tests were used, and for the selection of the distribution, the standard error of the estimate was also used. The Log-Normal distribution with three parameters was selected for series lasting one, five and six days. The Pearson III distribution was selected for a duration of three and four days and the GEV distribution for the other five series. The adjusted IDF equation allows the estimation of rainfall intensity with duration from 24 hours to 240 hours and a return period ranging from 2 to 100 years.

CARACTERIZAÇÃO E ANÁLISE DE FREQUÊNCIA DE CHUVAS MÁXIMAS DE LONGA DURAÇÃO DE SÃO MARTINHO, SANTA CATARINA, BRASIL

RESUMO

O estudo de frequência de chuvas intensas é importante para o planejamento agrícola e ambiental e para o dimensionamento de obras de drenagem. Esse trabalho teve como objetivo caracterizar e determinar as relações Intensidade, Duração e Frequência de chuvas de longa duração estação pluviométrica de São Martinho, Santa Catarina. Foram determinadas as séries de máximas anuais com duração de um a dez dias, observadas no período de 1977 a 2020. Foram avaliadas as distribuições de probabilidades Gumbel, GEV, Log-Normal com dois parâmetros, Log-Normal com três parâmetros, Pearson tipo III, Log-Pearson Tipo III. Os parâmetros foram estimados pelo método dos momentos, método da máxima verossimilhança, método dos L-Momentos, e para a distribuição Gumbel ainda foi usado o método de Chow. Foram usados os testes de aderência de Kolmogorov-Smirnov, Anderson-Darling, Filliben e para seleção da distribuição também foi usado o erro padrão de estimativa. A distribuição Log Normal com três parâmetros foi a selecionada para a séries com duração um, cinco e seis dias. Distribuição Pearson III foi selecionada para duração de três e quatro dias e a distribuição GEV para as demais cinco séries. A equação IDF ajustada permite estimar a intensidade da chuva com duração de 24 a 240 horas e período de retorno de 2 a 100 anos.

INTRODUTION

Extreme rains are responsible for problems with landslides, flooding, floods, causing urban and rural drainage problems. Mouri et al. (2013) highlighted the need for extreme event studies to assess the risk of natural disasters. In rural areas, heavy rains, in addition to drainage problems, cause soil erosion problems (MELLO et al., 2001).

Hydraulic structures such as canals, manholes, reservoirs, and dams are designed to reduce the impacts of extreme rain events (PENNER \& LIMA, 2016). In agricultural engineering, drainage and soil conservation building stand out, such as drainage canals, terraces, manholes and also reservoirs or dams for water storage (CRUCIANI et al., 2002; SANTOS et al., 2010).

When designing these works, it is necessary to know the characteristics of the rain that will be used in the project, such as height, duration and frequency. There are many studies on heavy rains with a daily duration inferior to 24 hours. We highlight papers on the adjustment of IDF equations for short-duration rainfall, which means, duration less than 24 hours (BACK \& CADORIN, 2021). However, in projects involving large basins, or in agricultural drainage studies, it is often necessary to consider the frequency of long-duration rains. Namitha and Vinothkumar (2019) stated that the analysis of maximum rainfall on consecutive days of different return periods is a basic tool for the safe economic planning of projects involving small dams, bridges, manholes, irrigation and drainage works. The authors also pointed out that the analysis of maximum rainfall on consecutive days is more relevant for the agricultural land drainage project. Pizarro (1978) and Beltrán (1987) presented the agricultural drainage criteria with maximum daily rainfall lasting from one to seven days.

According to Shah and Suryanarayana (2014), a good understanding of the pattern and distribution of rainfall is vital for the water resource management of a country. In particular, analysis of annual one-day maximum rainfall and consecutive days maximum rainfall of different return periods (typically from 2 to 100 years) is a basic tool for secure and cost-effective planning and design of small dams.

The study of the frequency of hydrologicalevents is performed with the application of theoretical probability distributions. Several probability distributions can be used to determine the probability of occurrence of extreme events (KIST \& VIRGENS FILHO, 2014; VIVEKANANDAN, 2015). When studying maximum rainfall, the most common distributions are the Gumbel distribution, the distributions of extreme events type I, the Generalized Distribution of Extreme Values (GEV), Log-Normal distribution with two parameters, log-Normal distribution with three parameters, Pearson Type III distribution and LogPearson Type III distribution.

The Gumbel distribution was identified by several studies as the most suitable when working with extreme rainfall (BACK, 2001; VIVEKANANDAN, 2015; MISTRY \& SURYANARAYANA, 2019), anditis recommended in Canada (DAS \& SIMONOVIC, 2011). More recently, several authors have suggested the GEV distribution as being the most indicated. Das and Simonvic (2011) highlighted that the GEV distribution manages to include the three extreme values (Gumbel, Fréchet and Weibull), so it has been considered superior (BESKOW et al., 2015; NAMITHA \& VINOTHKUMAR, 2019). GEV distribution is recommended in several countries, such as Austria, Germany, and Italy (SALINAS et al., 2014). The Pearson type III distribution is highly suggested in China (RIZWAN et al., 2018) and the Log-Pearson Type III distribution is adopted in the United States (USWRC, 1981).

An important aspect when applying probability distributions is the adjustment of its parameters. Several methods of adjustment can be used, and therefore, we must first evaluate the adjustment of the distribution, to later estimate the expected rainfall values (DOURADO NETO et al., 2005; MARQUES et al., 2014; DE PAOLA et al., 2018). The Method of Moments (MM) is one of the simplest methods, it is widely used and known for a long time, (LOUZADA et al., 2016), however, it is generally less accurate when compared to other methods. The maximum likelihood (MV) method is highlighted as having advantages over the method of moments, although it generally requires more complex calculation routines and difficulties in its
use (MARQUES et al., 2017). Estimation routines using the L-Moments method (MML) have been developed, which are easier to calculate than the MV method for most probability distributions (HOSKING, 2005).

Given the various probability distributions indicated for the study of maximum rainfall and different methods of estimating the parameters, this study aimed to analyze the frequency of rain events and adjust the equations for intense rainfall with long term for São Martinho, located in South Santa Catarina State, Brazil.

MATERIAL AND METHODS

We used daily rainfall data, from 1977 to 2020, from the São Martinho rainfall station, which belongs to the hydrological network of the National Water and Basic Sanitation Agency ("Agência Nacional de Águas e Saneamento Básico" in Portuguese) (ANA, 2020). The station (code 02848006) is located in São Martinho, Santa Catarina (SC), Brazil and inserted in the Tubarão River Watershed (Figure 1). This watershed, beyond the presence of several works to generate electricity, is also characterized by the occurrence of extreme flow events, causing flooding problems
that affect several municipalities.
Series of annual maximum daily rainfall lasting from one to ten days were selected, excluding two years with faulty observations, resulting in the sample with 42 annual observations. We evaluated the Gumbel, GEV, Pearson Type III, Log Pearson Type III, Log-Normal with two parameters, and Log-Normal with three parameters probability distributions. The Gumbel distribution (KITE, 1977) has the probability density function (Equation 1):
$f(x)=\alpha \exp \{-\alpha(X-\beta)-\exp (-\alpha(X-\beta))\}$

Where,
β is the location parameter, α is the scale parameter.

The probability density function of the GEV distribution (DAS \& SIMONOVIC, 2011) is given by Equation 2:
$f(x)=\frac{1}{\alpha}\left[1-k\left(\frac{x-\beta}{\alpha}\right)\right]^{\left(\frac{1}{k-1}\right)} \exp \left\{-\left[1-k\left(\frac{x-\beta}{\alpha}\right)\right]^{1 / k}\right\}$

Where,
β is the location parameter, α is the scale parameter and κ is the shape parameter.

Figure 1. Rainfall station location

When the shape parameter is equal to zero (k $=0$), this distribution is the Gumbel distribution. When it is greater than zero ($k>0$), the distribution is known as Frechet, and when it is less than zero $(\mathrm{k}<0)$ it is the Weibull distribution (DAS \& SIMONOVIC, 2011).

The Log-Normal distribution with two parameters (ALAM et al., 2018) has a probability density function given by Equation 3:

$$
\begin{equation*}
f(x)=\frac{1}{x \sigma_{y} \sqrt{2 \pi}} \exp \left[\frac{1}{x} \exp \left(-\frac{1}{2 \sigma_{\gamma}^{2}}\left(\ln (x)-\mu_{y}\right)^{2}\right)\right] \tag{3}
\end{equation*}
$$

Where,
μ_{y} is the shape parameter and σ_{y} is the scale parameter.

The Log-Normal distribution with three parameters (BACK, 2001) has a probability density function given by Equation 4:
$f(x)=\frac{1}{(x-\beta) \sigma_{y} \sqrt{2 \pi}} e^{\frac{\left[\ln (x-\beta)-\mu_{y}\right]^{2}}{2 \sigma_{y}^{2}}}$

Considering,
$\beta \leq \mathrm{x}$, where μ_{y} is the shape parameter, σ_{y} is the scale parameter and β is the location parameter.

The Pearson type III distribution (CLARKE, 1994) has a probability density function given by Equation 5:
$f(x)=\frac{1}{\alpha \Gamma(\beta)}\left(\frac{x-\gamma}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\gamma}{\alpha}\right)}, x \geq \gamma$

Where,
α is the scale parameter, β is the shape parameter and γ is the location parameter.

If the logarithms of $x(\ln x)$ are distributed according to the Pearson variation type III (KITE, 1977), the variable x must be distributed as Log Pearson type III with density and probability function (Equation 6):
$f(x)=\frac{1}{\alpha X \Gamma(\beta)}\left\{\frac{\ln (X)-\gamma}{\alpha}\right\}^{\beta-1} e^{-\left\{\frac{\ln (X)-\gamma}{\alpha}\right\}}$

The parameters of each distribution were
estimated by the methods of moments (KITE, 1977), the maximum likelihood method (KITE, 1977), and the method of L-Moments (HOSKING, 2005). For the Gumbel distribution, the GumbelChow method was also used (CHOW, 1964).

The fit of the distributions was evaluated using the Kolmogorov-Smirnov (KS) test (KITE, 1977); Anderson-Darling test (AD) at a significance level of $5 \%(\alpha=0.05)$ and the Filiben test. The Kolmogorov-Smirnov (KS) fitting test is a nonparametric and its statistics are based on the maximum difference ($\mathrm{D}_{\text {max }}$) between the empirical frequencies $(\mathrm{Fn}(\mathrm{x}))$ and the theoretical frequencies $\mathrm{F}(\mathrm{x})$, that is (Equation 7):
$D_{\text {max }}=\operatorname{Max}|F n(x)-F(x)|$

For the empirical frequency, the frequency of Cunnane (1978) was used, given by Equation (8):
$F_{N}\left(x_{m}\right)=\frac{i-0,4}{n+0,2}$

The test statistic $\left(\mathrm{D}_{\text {max }}\right)$ is compared with the critical value ($\mathrm{D}_{\text {crit }}$) at the 5% significance level.

Anderson-Darling test statistic is given by Equation 9:
$A^{2}=-N-\sum_{i=1}^{N} \frac{(2 i-1)\left\{\ln F_{x}\left(x(\mathcal{D})+\ln \left[1-F_{x}(x(N-i+1))\right]\right\}\right.}{N}$

Where,
$\left\{\mathrm{x}_{(1)}, \mathrm{x}_{(2)}, \ldots, \mathrm{x}_{(\mathrm{m})}, \ldots \mathrm{x}_{(\mathrm{N})}\right\} \quad$ represent the observations in ascending order (NAGHETTINI \& PINTO, 2007).

The A^{2} values are compared with the critical values (ADc) tabulated as a function of the probability distribution and the level of significance.

The statistic of the Filliben test (FILLIBEN, 1975) is expressed by Equations 10, 11 e 12:
$R f=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(w_{i}-\bar{w}\right)}{\sqrt{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{N}\left(w_{i}-\bar{w}\right)^{2}}}$

Where,
$\bar{x}=\frac{\sum_{i=1}^{N} x_{(i)}}{N}$
and,
$\bar{w}=\frac{\sum_{i=1}^{N} w_{i}}{N}$

The calculated R_{f} value is compared with the critical value ($\mathrm{R}_{\text {crit }}$). The Filliben test has the inconvenience that the critical values depend on the sample size, on the distribution to be tested, and on the expression used to calculate the empirical probability. For this paper, the critical values were calculated according to the equations presented by Heo et al. (2008).

The distributions fit was also evaluated by the Root Mean Square Error (RMSE), also known as standard error of estimate (KITE, 1977), given by Equation 13:
$R M S E=\sqrt{\frac{\sum_{i 1}^{n}\left(X_{i}-X e_{i}\right)^{2}}{n}}$
Where,
RMSE is the Root Mean Square Error for a given probability distribution; X_{i} is the registered precipitation of order $\mathrm{i} ; \mathrm{Xe}_{\mathrm{i}}$ is the precipitation estimated by the theoretical probability distribution; n is the number of elements in the series of annual highs.

As different criteria indicate different distributions, several authors (MANDAL \& CHOUDHURY, 2015; ALAM et al., 2018) have considered a ranking of all indexes.

Considering the distribution with the best fit for each duration, rainfall heights with a return period ranging from 2 to 100 years and duration from one to ten days were estimated. These heights were converted into intensities, and an equation was adjusted to estimate the intensity of the rain according to Equation 14:
$i=\frac{K T^{m}}{(t+b)^{n}}$

Where,
$\mathrm{i}=$ the rain intensity $\left(\mathrm{mm} . \mathrm{h}^{-1}\right)$;
$\mathrm{T}=$ the return period (in years);
$\mathrm{t}=$ the rain duration (in hours);
$\mathrm{K}, \mathrm{m}, \mathrm{b}$ and $\mathrm{n}=$ coefficients to be fitted.

The parameters were adjusted by minimizing the S function, given by Equation 15:
$\mathrm{S}=\sum_{\mathrm{d}=1}^{\mathrm{n}} \sum_{\mathrm{T}=1}^{\mathrm{n}}\left[\left(\mathrm{fi}_{\mathrm{d}, \mathrm{T}}-\mathrm{fo}_{\mathrm{d}, \mathrm{T}}\right) / \mathrm{fo}_{\mathrm{d}, \mathrm{T}}\right]^{2}$

Where,
$S=$ the objective function to be minimized
$\mathrm{fi}_{\mathrm{d}, \mathrm{T}}=$ estimated intensity for duration d, and return period T;
$\mathrm{fo}_{\mathrm{d}, \mathrm{T}}=$ observed intensity for duration d, and return period T.

RESULTS AND DISCUSSION

The characteristics of the maximum annual rainfall series can be seen in Figure 2 and Table 1. It is observed that the series presented a positive asymmetry coefficient, ranging from 0.14 (for the duration of two days) to 2.0 (for duration of seven days). Several authors (OLOFINTOYE et al., 2009; BACK \& CADORIN, 2020; BACK et al., 2020) emphasize that the maximum rainfall series present positive asymmetry. Back and Bonfante (2021) analyzed 224 rainfall stations in Santa Catarina, and found asymmetry ranging from -0.277 to 3.917 . However, they pointed out that only 3.6% of the stations had negative asymmetry. The coefficient of variation presented values between 27.8% (for the duration of 2 days) and 40.0% (for the duration of 7 days). Back and Bonfante (2021) found a coefficient of variation between 27.5% and 47.2%. Similar characteristics for annual maximum rainfall series were observed by Olofintoye et al. (2009), analyzing data from 20 rainfall stations in Nigeria, where they observed annual series and maximums of one day of duration with averages ranging from 73.4 mm to 139.5 mm , coefficient of variation ranging from 16% to 30% and asymmetry ranging from 1.15 to 3.46. However, there are studies of intense rainfall on consecutive days that show higher values of coefficient of variation, especially in monsoon climate regions. Bhakar et al. (2006) showed that rainfall series from Banswara, Rajasthan (India), lasting from 1 to 5 days, ranged from 138.4 mm to 169.3 mm , with the coefficient of variation ranging from 62% to 76% and coefficient of asymmetry ranging from 0.98 to 1.70 . Kwaku and Duke (2007), analyzing rainfall data for up to five consecutive days in Accra (Ghana), found an average ranging from 92.3 mm to 120.0 mm , with asymmetry from 1.10 to 1.93 and coefficient of variation between 43.3% and 45.5%.

The distributions with the best fit for each duration, with the respective parameters are shown in Table 2. The respective statistics of the Kolmogorov-Smirnov, Anderson-Darling, and Filliben fitting tests and the standard error of the estimate were also presented. Except for the Log-Normal distribution for the series of oneday duration, which was rejected by the Filliben fitting test, all distributions were accepted at a significance level of 5% for all other fitting tests. Therefore, all distributions can be used to estimate
maximum rainfall. For the series of one-day duration, the extreme value of 200.4 mm (Figure 2) impaired the distribution fitting, as can be seen in Figure 3A. The difficulty that arises is how to select the best distribution to be used. It is common to select the distribution according to one of the fitting tests. However, different criteria point to different distributions, so a ranking has been proposed considering all indices (MANDAL \& CHOUDHURY, 2014; ALAM et al., 2018; BACK \& BONFANTE, 2021).

Table 1. Descriptive statistics of maximum annual rainfall series, from 1977 to 2020, São Martinho, SC, Brazil

Duration	Average (mm)	Standard deviation (mm)	Asymmetry	Coefficient of Variation $(\%)$	Highest (mm)	Lower (mm)
1 day	101.3	28.5	0.66	28.2	200.4	51.6
2 days	134.8	37.4	0.14	27.8	213.8	53.6
3 days	153.6	45.6	0.63	29.7	266.2	72.0
4 days	164.8	51.0	0.75	31.0	299.0	73.4
5 days	177.0	60.7	1.08	34.3	367.4	85.2
6 days	186.7	71.2	1.86	38.1	471.6	100.6
7 days	195.6	78.2	2.00	40.0	519.6	100.6
8 days	204.1	78.0	1.89	38.2	520.5	100.6
9 days	214.4	76.3	1.76	35.6	521.1	101.1
10 days	220.4	75.2	1.74	34.1	521.1	114.1

Figure 2. Boxplot of the series of annual maximums lasting from one to ten days in São Martinho, SC, Brazil

Applying the ranking of the scores of the fitting tests, the Log-Normal distribution with three parameters presented better adjustment for the series with duration of one, five and six days, and the Pearson III distribution was the most adequate for durations of three and four days. The GEV distribution proved to be the most suitable for five series (two, seven, eight, nine and ten days), being adequate for series with both smaller or greater asymmetry. It is noteworthy that the shape parameter (k) allows adapting the GEV distribution to different data asymmetry. These results are in agreement with other studies that show that although the Gumbel and GEV distributions are not rejected by the fitting tests, the GEV distribution shows a better fit (MELLO \& SILVA, 2005; BLAIN \& MESCHIATTI, 2014; BESKOW et al., 2015; NAMITHA \& VINOTHKUMAR, 2019; CORONADO-HERNÁNDEZ et al., 2020); BACK \& CADORIN, 2020; BACK et al., 2020).

The Log-Normal distribution with two parameters and the Gumbel distribution were not selected in any of the analyzed series. Kite (1977) states that there is theoretical justification for using the Log-Normal distribution for several variables. Junqueira Júnior et al. (2006) also highlight that the Log-Normal distribution has a good fit when it comes to Brazilian rainfall distributions, pointing out the advantage of less complexity when compared to other distributions. Some studies analyzing intense rainfall on consecutive days indicated the Log Normal distribution as the most indicated (BHAKAR et al., 2006; KWAKU \& DUKE, 2007; BARKOTULLA et al., 2009;

SHAH \& SURYANARAYANA, 2014). However, all these works only analyzed the Normal, Gamma and Log Normal distributions, not including the other distributions known to be applied to extreme events. Back (2001) observed that the Log-Normal distribution with three parameters presented better fit than other distributions in series of annual maximums with low skewness and kurtosis.

Figure 3 shows the adherence of the series of annual maximums to the theoretical distributions identified as the best for each duration. This figure also include the Gumbel distribution, since this probability distribution is widely used for extreme value analysis of hydrologic and meteorological data (SABARISH et al., 2017) especially for maximum rainfalls (TEIXEIRA, 2019; GONZÁLEZ-ÁLVAREZ et al., 2019). Although the Gumbel distribution was not rejected by the fitting tests, it was not identified as the best in any of the analyzed series. This result differs from several studies that indicate the Gumbel distribution as the best (SANSIGOLO, 2008; BORGES \& THEBALDI, 2012; MARQUES et al., 2014). Back (2001), analyzing data from 100 rainfall stations in Santa Catarina and comparing various probability distributions, concluded that the Gumbel-Chow distribution was the best in more than 60% of the stations. Back (2018) has already highlighted that many papers use only the Gumbel distribution to estimate maximum rainfall, without even testing other distributions. Several studies indicate the Gumbel distribution as the most appropriate (BACK, 2001; MOMIN et al., 2011;

Table 2. Parameters of the distributions probability and statistical of the fitting tests of KolmogorovSmirnov (KS), Anderson-Darling (AD), Filliben (Rf) the Root Mean Square Error (RMSE)

Duration (days)	Distribution and adjustment method ${ }^{1}$		Parameters of			Fitting tests			
			scale	location	Form	KS	AD	Rf	RMSE
1	LN 3	MM	4.8630	0.2131	-31.0880	0.1104	0.6317	0.9680	7.1
2	GEV	LM	36.8834	120.7085	0.2369	0.0598	0.1236	0.9966	3.1
3	P III	LM	18.9018	6.0750	38.8070	0.0885	0.1692	0.9951	4.5
4	P III	LM	26.7877	3.8029	62.9094	0.1030	0.3031	0.9930	6.0
5	LN 3	MV	4.8070	0.4411	42.5198	0.0804	0.1899	0.9966	5.0
6	LN 3	LM	4.4992	0.6157	77.9985	0.0694	0.1712	0.9904	10.1
7	GEV	LM	51.5887	159.6379	-0.1090	0.0789	0.1890	0.9958	13.7
8	GEV	LM	52.4284	168.2927	-0.0980	0.0730	0.1728	0.9875	12.9
9	GEV	LM	52.4034	179.2342	-0.0866	0.0784	0.2011	0.9856	13.3
10	GEV	LM	50.7839	185.4674	-0.1018	0.0988	0.2935	0.9875	12.3

${ }^{1}$ LN 3 - Log-Normal 3 parameters; GEV - Generalized extreme value; PIII - Pearson type III;MM -Method of moments; ${ }^{2}$ MV -maximum likelihood ; ${ }^{3} \mathrm{LM}$ - L-moments. ${ }^{2} \mathrm{KS}$ critical $(\alpha=0.05)=0.2050 ;{ }^{3} \mathrm{AD}$ critical $(\alpha=0.05)=0.752 ;{ }^{4} \mathrm{Rf}$ critical $(\alpha=0.05)=0.9774$

BORGES \& THEBALDI, 2016; SASIREKA et al., 2019). The Gumbel distribution has a theoretical skewness coefficient of 1.1396 , so it is expected for a series with skewness far from this value to be considered inadequate. On the other hand, the GEV distribution has the k parameter that allows greater adjustment to the data distribution format.

These results show that, even if the main probability distribution chosen is not rejected by
the fitting test, it is recommended to test other distributions, looking for a distribution that best fits the data. Back and Bonfante (2021) showed that for return periods of 100 years, the differences in the estimates of each tested distribution are less than 10%. However, for return periods longer than 100 years, two probability distributions not rejected in fitting tests may have differences in the estimated values bigger than 40%.

Figure 3. Adherence of maximum annual rainfall series with duration of one day (A), two days (B), three days (C), 4 days (D), 5 days (E), 6 days (F), 7 days (G), 8 days (H), 9 days (I) and 10 days (J) in São Martinho, SC, Brazil

In Figure 4 is shown the maximum rainfall with a return period ranging from 2 to 100 years, estimated with the selected probability distributions for each duration (Table 2). These results can be applied to most agricultural drainage projects where the return period is shorter than 25 years (PIZARRO, 1978; BELTRÁN, 1986). These data can be expressed through the IDF equation given by Equation 16 :
$i=\frac{24,3 T^{0,2003}}{(t+0,1146)^{0,6126}}$

Where,
i is the rainfall intensity (mm. h^{-1}), t is the rainfall duration (h) and T is the return period (years).

This equation is valid for durations $24 \leq$ $\mathrm{t} \leq 240$ hours and periods ranging from 2 to 100 years. Several authors (BELTRÁN, 1986; CRUCIANI et al., 2002; BHAKAR et al., 2006; BARKOTULLA et al., 2009) comment that for agricultural engineering projects and small dams the return period ranging from 2 to 100 years is adequate. However, for projects where the adopted return period is over 100 years (ELETROBRÁS, 2003,) such as dams, bridges (IRYDA, 1985; EUCLYDES, 1987; DNIT, 2005), a more detailed study is recommended to select and adjust the distribution parameters best suited to the location.

In Brazil there are hundreds of studies regarding IDF equations (BACK \& CADORIN, 2021) however, these equations are adjusted for durations of up to 24 hours. The equation presented in this paper shows that these equations can also be adjusted for long-term rainfall.

The equation suggested in this paper has the advantage of allowing the rainfall intensity (or height of the rain) to be obtained for intermediate durations and not just exact whole days. Another advantage of using the equation is that it corrects possible inconsistencies caused by fitting the probability distributions for each duration separately. In these cases, it is possible, especially when using long return periods, that the maximum rainfall estimated for a certain duration is greater than the one estimated for a greater duration. Momin et al. (2011) presented a probability distribution adjustment for maximum rainfall series lasting from one to five days in which the maximum rainfall with a duration of two days for a return period of more than 5 years is higher than the rainfall with a duration of three days. The IDF equation corrects this inconsistency. In Table 3 is shown maximum rainfall estimates with a duration from 1 to ten days and a return period ranging from 2 to 100 years obtained from the adjusted IDF equation.

Figure 4. Estimated maximum rainfall with duration from one to 10 days and return period ranging from 2 to 100 years for São Martinho, SC, Brazil

Table 3. Maximum rainfall estimates with a duration from one to 10 days and a return period ranging from 2 to 100 years, obtained from the São Martinho adjusted IDF equation

t -hour	T - Return period (years)						
	2	5	10	20	25	50	100
24	94.7	113.7	130.7	150.2	157.0	180.4	207.3
48	123.8	148.8	170.9	196.4	205.4	236.0	271.1
72	144.8	174.0	199.9	229.7	240.2	276.0	317.1
96	161.8	194.4	223.4	256.7	268.4	308.4	354.3
120	176.4	211.9	243.5	279.7	292.5	336.1	386.2
142	189.2	227.3	261.2	300.1	313.8	360.6	414.3
166	200.8	241.3	277.2	318.5	333.1	382.7	439.7
190	211.4	254.0	291.8	335.3	350.7	402.9	462.9
216	221.2	265.8	305.4	350.9	366.9	421.6	484.4
240	230.4	276.8	318.1	365.4	382.1	439.1	504.5

CONCLUSION

Based on the annual maximum series of 42 years, it can be concluded that:

- The series of annual maximums lasting from one to ten days had an average ranging from 101.3 mm to 220.4 mm ; coefficient of variation ranging from 27.8% to 40.0% and coefficient of asymmetry ranging from 0.66 to 2.00 ;
- The Log-Normal distribution with three parameters was the most adequate for series with a duration of one, five, and six days; the Pearson III distribution was more adequate for the duration of three and four days, while the GEV distribution was indicated as the best for the duration of two, seven, eight, nine and ten days.
- The adjusted IDF equation allows estimating rainfall intensity for durations between 24 hours and 240 hours and a return period ranging from 2 to 100 years.

AUTHORSHIP CONTRIBUTION STATEMENT

BACK, A.J.: Conceptualization, Data curation, Methodology, Supervision, Writing - original draft; BACK, L.: Formal Analysis, Software, Visualization, Writing - review \& editing.

DECLARATION OF INTERESTS

The authors declare that they have no known
competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO - ANA. Hidroweb: Sistemas de Informações Hidrológicas. Available in: http:// hidroweb.ana.gov.br. Access in: Nov. 24, 2021.

ALAM, M. A.; EMURA, K.; FARNHAM, C.; YUAN, J. Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh. Climate, v.6, n.9, p.1-17, 2018.

BACK, Á. J.; BONFANTE, F. M. Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall. Revista Brasileira de Ciências Ambientais, v.56, n.4, p.54-664, 2021

BACK, Á. J. Seleção de distribuição de probabilidades para chuvas diárias extremas do estado de Santa Catarina. Revista Brasileira de Meteorologia, v. 16, p. 211-222, 2001.

BACK, Á. J. Frequência de vazões máximas para projetos de drenagem. Revista Técnico-Científica de Engenharia Civil, v.1, n.2, p.1-14, 2018.

BACK, Á. J.; CADORIN, S. B. Heavy rain equations for Brazil. International Journal Of Development Research, v. 11, p. 43332-43337, 2021.

BACK, Á. J.; CADORIN, S. B. Extreme rainfall and intensity-duration-frequency equations for the state of Acre. Brazil. Brazilian Journal of Environmental Sciences, v.55, n.2, p.159-170. 2020.

BACK, Á. J.; CADORIN, S. B.; GALATTO, S. L. Extreme rainfall and IDF equations for Alagoas State, Brazil. Revista Ambiente \& Água, v. 15, n. 6, 2020.

BHAKAR, S. R.; BANSAL, A. K.; CHHAJED, N.; PUROHIR, R.C. Frequency analysis of consecutive days maximum rainfall at Banswara, Rajasthan, India. ARPN Journal of Engineering and Applied Sciences, v.1, n.3. p.64-67, 2006.

BARKOTULLA, M. A. B.; RAHMAN. M. S.; RAHMAN, M. M. Characterization and frequency analysis of consecutive days maximum rainfall at Boalia, Rajshahi and Bangladesh. Journal of Development and Agricultural Economics, v.1, n.5, p. 121-126, 2009.

BELTRÁN, J. M. Drenaje Agricola. Madrid: Ministerio de Agricultura, Pesca y Alimentación/ Instituto Nacional de Reforma y Desarrollo Agrario, 1986. (Series de Ingeniería Rural y Desarrollo Agrario - Manual técnico Num. 5).

BESKOW, S.; CALDEIRA, T. L.; MELLO, C. R.; FARIA, L. C.; GUEDES, H. A. S. Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies, p. 123-133, 2015.

BLAIN, G. C.; MESCHIATTI, M. C. Distribuições multi-paramétricas para avaliar a probabilidade de ocorrência de eventos extremos de precipitação pluvial. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 3, p. 307-313, 2014.

BORGES, G. M. R.; THEBALDI, M. S. Estimativa da precipitação máxima diária anual e equação de chuvas intensas para o município de Formiga, MG, Brasil. Ambiente \& Água, v. 11, n. 4, 2016.

CHOW, V. Handbook of applied hydrology. New York: McGraw-Hill, 1964.

CLARKE, R. T. Fitting distributions. In: CLARKE, R. T. Statistical modelling in Hydrology. Chichester. Chichester: John Wiley \& Sons, 1994. p.39-84.

CORONADO-HERNÁNDEZ, O.C.; MERLANOSABALZA, E.; DÍAZ-VERGARA, Z.; CORONADO- HERNÁNDEZ, J. R. Selection of Hydrological Probability Distributions for Extreme Rainfall Events in the Regions of Colombia. Water, v. 12, n. 5, 2020.

CRUCIANI, D. E.; MACHADO, R. E.; SENTELHAS, P. C. Modelos da distribuição temporal de chuvas intensas em Piracicaba, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 6, n. 1, p. 76-82, 2002.

CUNNANE, C. A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. Journal of Hydrology, v. 18, p. 257-271, 1973.

DAS, N. M. S.; SIMONOVIC, S. P. The Comparison of GEV, Log-Pearson Type 3 and Gumbel Distributions in the Upper Thames River Watershed under Global Climate Models. Water Resources Research Report, p. 1-54, 2011.

DE PAOLA, F.; GIUGNI, M.; PUGLIESE, F.; ANNIS, A; NARDI, F. GEV parameter estimation and stationary vs. non-stationary analysis of extreme rainfall in African test cities. Hydrology, v. 5, n. 28, 2018.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTE DNIT. Manual de Hidrologia básica para estruturas de drenagem. Rio de Janeiro: DNIT, 2005.

DOURADO NETO, D.; ASSIS, J. P.; TIMM, L. C.; MANFRON, P. A.; SPAROVEK, G.; MARTIN, T. N. Ajuste de modelos de distribuição de probabilidade a séries históricas de precipitação pluvial diária em Piracicaba - SP. Rev. Bras. Agrometeorologia, v. 13, n. 2, p. 273-283, 2005.

ELETROBRÁS. Diretrizes para projetos de pequenas centrais hidrelétricas. Rio de Janeiro, Eletrobrás, 2003. 458p.

EUCLYDES, H. Saneamento Agrícola. Atenuação das cheias: metodologia e projeto. Belo Horizonte; Ruralminas. 1987.

FILLIBEN, J. J. The probability plot correlation coefficient test for normality. Technometrics, v. 17, p. 11-117, 1975.

GONZÁLEZ-ÁLVAREZ, Á.; VILORIAMARIMÓN, O.M.; CORONADO-HERNÁNDEZ, Ó.E.; VÉLEZ-PEREIRA, A.M.; TESFAGIORGIS, K.; CORONADO-HERNÁNDEZ, J.R. Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water, v. 11, n. 2, 2019.

HEO, J. H.; KHO, Y. W.; SHIN, H.; KIM, S.; KIM, T. Regression equations of probability plot correlation coefficient test statistics from several probability distributions. Journal of Hydrology, v. 355, p.1-15, 2008.

HOSKING, J. R. M. FORTRAN Routines for use with the method of L-moments. Yorktown Heights: IBM Research Division, Thomas J. Watson Research Division, 2005.

IRYDA. Instituto Nacional de Reforma y Desarrollo Agrario. Diseño y construcción de pequeños embalses. Madrid: IRYDA, 1985. (Series de Ingenieria Rural y Desarrollo Agrario).

JUNQUEIRA JÚNIOR, J. A.; GOMES, N. M.; MELLO, C. R.; SILVA, A. M. Precipitação provável para a região de Madre de Deus, Alto Rio Grande: modelos de probabilidades e valores característicos. Ciência e Agrotecnologia, v. 31, n. 3, p. 842-850, 2006.

KITE, G. W. Frequency and risk analyses in Hydrology. Colorado: Water Resources publications, 1977.

KIST, A.; VIRGENS FILHO, J. S. Análise probabilística da distribuição de dados diários de chuva no estado do Paraná. Revista Ambiente \& Água, v.10, n.1, 2015.

KWAKU, X. S.; DUKE, O. Characterization and frequency analysis of one day annual maximum and two to five consecutive days' maximum rainfall of Accra, Ghana. ARPN Journal of Engineering and Applied Sciences, v.2, n.5, p. 27-31, 2007.

LOUZADA, F.; RAMOS, P. L.; PERDONÁ, G. S. C. Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data. Computational And Mathematical Methods In Medicine, v. 2016, p. 1-12, 2016.

MANDAL, S.; CHOUDHURY, B.U. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models. Theoretical an Applied Climatology. 2014.

MARQUES, R. F. P. V.; MELLO, C. R.; SILVA, A. M.; FRANCO, C. S.; OLIVEIRA, A. S. Desempenho de distribuições de probabilidades aplicadas a eventos extremos de precipitação diária. Ciência Agrotecnologia, v.38, n.4, p.335342, 2014.

MARQUES, R. F. P. V.; MELLO, C. R.; FRANCO, C. S.; OLIVEIRA, S.; ALCANTRA, E. Métodos de estimativas dos Parâmetros da distribuição LogNormal a 3 parâmetros para a precipitação máxima diária em municípios com médio a alto potencial erosivo. Sustentare, v.1, n.1, p.108-117, 2017

MELLO, C. R.; SILVA, A. M. Métodos estimadores dos parâmetros da distribuição de Gumbel e sua influência em estudos hidrológicos de projeto. Irriga, v. 10, n.4, p.318-334, 2005.

MELLO, C. R.; FERREIRA, D. F.; SILVA, A. M.; LIMA, J. M. Análise de modelos matemáticos aplicados ao estudo de chuvas intensas. Revista Brasileira de Ciência do Solo, v. 25, p. 693-698, 2001.

MISTRY, P. B.; SURYANARAYANA, M. V. Estimation of annual one day maximum rainfall using probability distributions for Waghodia Taluka, Vadodara. Global Research and Development Journal for Engineering, p. 296300, 2019.

MOMIN, U.; KULKARNI, P. S.; HORAGINAMANI, S. M.; RAVICHANDRAN, M.; PATEL, A. M.; KOUSAR, K. Consecutive Days Maximum Rainfall Analysis by Gumbel's Extreme Value Distributions for Southern Telangan. Indian Journal of Natural Sciences, v. 11, n. 7, p.408412, 2011.

MOURI. G.; MINOSHIMA. D.; GOLOSOV, V.; CHALOV, S.; SETO, S.; YOSHIMURA, K.; NAKAMURA, S.; OKI, T. Probability assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways model. International Journal of Disaster Risk Reduction, v.3, p.31-43, 2013.

NAGHETTINI, M.; PINTO, E. J. A. Hidrologia estatística. Belo Horizonte: CPRM, 2007.

NAMITHA, M. R.; VINOTHKUMAR, V. Development of empirical models from rainfall-intensity-duration-frequency curves for consecutive Days maximum rainfall using GEV distribution. Journal of Pharmacognosy and Phytochemistry, v. 8, n. 1, p. 2705-2709, 2019.

OLOFINTOYE, O. O.; SULE, B. F.; SALAMI, A. W. Best-fit Probability distribution model for peak daily rainfall of selected Cities in Nigeria. New York Science Journal, v.2, n.3, 2009.

PENNER, G. C.; LIMA, M. P. Comparação entre métodos de determinação da equação de chuvas intensas para a cidade de Ribeirão Preto. Geociências, v. 35, n. 4, p.542-559, 2016.

SANTOS, G. G.; GRIEBELER, N. P.; OLIVEIRA, L. F. C. Chuvas intensas relacionadas à erosão hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n.2, p. 115-123, 2010.

PIZARRO, F. Drenaje agrícola y recuperacion de suelos salinos. Madrid: Editorial Agrícola Epañola, 1978.

RIZWAN, M.; GUO, S.; XIONG, F.; YIN, J. Evaluation of various probability distributions for deriving design flood featuring right-tail events in Pakistan. Water, v. 10, n.1603, p. 1-18, 2018.

SABARISH, R. M.; NARASIMHAN. R.; CHANDHRU, A. R.; SURIBABU, C. R.; SUDHARSAN, J.; NITHIYANANTHAM, S. Probability analysis for consecutive-day maximum rainfall for Tiruchirapalli City (south India, Asia). Appl Water Sci, v.7, p.1033-1042, 2017.

SALINAS, J. L.; CASTELLARIN, A.; KOHNOVÁ, S.; KJELDSEN, T. R. Regional parent flood frequency distributions in EuropePart 2: climate and scale controls. Hydrology and Earth System Sciences, v. 18, p. 4391-4401, 2014.

SANSIGOLO, C. A. Distribuições de extremos de precipitação diária, temperatura máxima e mínima e velocidade do vento em Piracicaba, SP (19172006). Revista Brasileira de Meteorologia, v. 23, n. 3, p.341-346, 2008.

SASIREKA, K.; SURIBABU, C. R.; NEELAKANTAN, T. R. Extreme Rainfall Return Periods using Gumbel and Gamma Distribution. International Journal of Recent Technology and Engineering (IJRTE), v. 8, n. 4, 2019.

SHAH, K.; SURYANARAYANA, T. M. V. Characterization and Frequency Analysis of One Day Annual Maximum and Two to Seven Consecutive Days' Maximum Rainfall of Panam Dam, Gujarat, India. International Journal of Engineering Trends and Technology, v. 13, n. 2, p. 76-80, 2014.

TEIXEIRA, S. A. Coeficientes da equação de intensidade-duração-frequência para Tibagi-PR com distribuição Gumbel-Chow. Journal of Agronomic Sciences, v.8, p.59-72, 2019

CHARACTERIZATION AND FREQUENCY ANALYSIS OF LONG-TERM MAXIMUM RAINFALL FROM...
U.S. Water Resources Council(USWRC). Guidelines for Determining Flood Flow Frequency. Bulletin 17A, U.S Geological Survey, 1981.

VIVEKANANDAN, N. Quantitative Assessment on Fitting of Gumbel and Frechet Distributions for Extreme Value Analysis of Rainfall. International Journal of Scientific Research in Science and Technology, v. 1, n. 2, p. 68-73, 2015.

