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ABSTRACT

Brazil stands out in the international citrus trade, especially due to its oranges, having produced around 
16 million tons in 2021. However, productivity could be increased with greater control of diseases such 
as greening, which has spread around the world and leads to the total loss of affected trees. Given 
this scenario, it is necessary to perform fast and accurate detections in order to better manage actions 
and inputs. Since remote sensing is a pillar of digital agriculture, a literature review was carried out to 
analyze the use of optical and thermal sensors for the detection of diseases that affect citrus groves. 
For this purpose, the international databases Scopus and Web of Science were used to select references 
published between 2012 and 2022, resulting in twelve studies — most from China or the United States 
of America. The results showed a prevalence of methodologies that combine bands and spectral indices 
obtained through the use of multispectral and hyperspectral sensors, predominantly on board unmanned 
aircrafts (UAVs). Machine learning (ML) and deep learning (DL) classification algorithms produced 
good results in the detection of citrus groves affected by diseases, mainly greening. These results are 
affected by the stage of the infection, the presence or absence of symptoms, and the spectral and spatial 
resolutions of the sensors: the Red-Edge band and data with higher spatial detail result in more accurate 
classification models. However, the analyzed literature is still inconclusive regarding the early detection 
of infected plants.
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DETECÇÃO DE DOENÇAS EM CITROS UTILIZANDO SENSORIAMENTO REMOTO 
ÓPTICO E TÉRMICO: UMA REVISÃO DE LITERATURA

RESUMO

O Brasil se destaca no comércio internacional de citros, principalmente a laranja, e produziu cerca de 16 
milhões de toneladas em 2021. Todavia, a produtividade poderia ser aumentada com o maior controle das 
doenças como o greening, que se espalhou por todo o mundo e leva à perda total das árvores afetadas. 
Diante desse cenário, é necessário realizar detecções rápidas e precisas para que haja uma melhor gestão 
de ações e insumos. Tendo em vista que o sensoriamento remoto é cada vez mais aplicado no contexto da 
agricultura digital, foi realizada uma revisão de literatura referente ao uso de sensores ópticos e termais 
na detecção de doenças que afetam pomares de citros. Como bases de informações sobre os artigos 
científicos analisados, utilizou-se os bancos de dados internacionais Scopus e Web of Science, entre 
2012 e 2022. Essa análise resultou em doze estudos, com predominância de representação científica 
na China e Estados Unidos da América. Além de prevalência de metodologias que combinam bandas e 
índices espectrais, obtidos principalmente por meio de sensores multi e hiperespectrais embarcados em 
aeronaves não-tripuladas (UAVs).  Percebe-se que algoritmos de aprendizado de máquina produzem 
bons resultados na detecção de pomares de citros afetados por doenças, principalmente o greening. 
Contudo, os resultados variam de acordo com o estágio da doença, com a ocorrência ou não de sintomas, 
bem como com a resolução espacial das imagens. A banda Red-Edge e dados de maior detalhamento 
espacial produzem melhores resultados, porém, a literatura analisada ainda não é conclusiva a respeito 
da detecção precoce de todas as doenças em citros.

									                       THIS IS AN OPEN ACCESS
                                                                                                             						               ARTICLE UNDER THE CC BY

LICENSE CREATIVE COMMON     

									             

	 	              				  
                         Viçosa, MG, DEA/UFV - DOI: 10.13083/reveng.v30i1.15448 v.31, p.140-157, 2023

_____________________
Received 25 Feb, 2023 . Accepted 12 Jul, 2023 . Published 24 Aug, 2023

SECTION EDITOR IN CHARGE	                        Email (corresponding author)*: v245192@dac.unicamp.br

Gabriel Araújo e Silva Ferraz

https://orcid.org/0009-0009-6801-201X
https://orcid.org/0000-0003-2621-7745
https://orcid.org/0000-0001-7777-2445
https://doi.org/10.13083/reveng.v30i1.15448


141

INTRODUCTION

Estimates indicate that the world population 
will reach the figure of over 9 billion people by 
2050, posing the need to increase food production 
by 70%, with less environmental degradation, 
and also with a reduction of deforestation and 
of agrochemicals (FAO, 2017). In this context, 
there is a need for Brazil, one of the largest food 
suppliers on the global market, to restructure 
production chains aiming at greater efficiency and 
sustainability, reducing losses and fulfilling the 
sustainable development objectives defined by the 
United Nations (UN) (MASSRUHÁ et al., 2020).

Brazil is the world’s largest producer of 
oranges and orange juice, and the second-largest 
producer of citrus (VIDAL, 2022). In 50 years, 
the country has generated 60 billion dollars in 
revenue from the export of orange juice in updated 
values (NEVES et al., 2010), and the total national 
production of the fruit in 2021 was estimated 
at 16.2 million tons, yielding around R$ 12.5 
billion (IBGE, 2023). In addition to having a solid 
economic impact, citriculture also has significant 
social relevance, considering that along the citrus 
production chain, each direct job generates two 
indirect jobs (NEVES et al., 2010). In 2021, there 
were 44,837 new admissions of workers in the 
sector (CITRUSBR, 2022).

However, diseases limit the economic benefits 
and can cause losses of up to 70% in productivity 
(USDA, 2022): such is the case of citrus greening, 
also known as Huanglongbing (HLB), with high 
destructive potential, affecting all commercial 
varieties (DA GRAÇA, 1991; BOVÉ, 2006); 
Citrus Variegated Chlorosis (CVC), common 
in older plants, characterized by symptoms of 
nutritional deficiency (chlorosis) and reduced fruit 
size (ROSSETTI & DE NEGRI, 2011); and citrus 
canker, a severe disease that generates necrotic 
lesions and is present in about 15% of the stands 
(GOTO, 1992).

HLB was initially identified and described 
in the first decades of the 20th century, but it has 
become the leading cause of losses and increased 
costs in citrus production in the 21st century, since 
there is no cure for infected canopies, resulting in 
a global reduction of about 40% of the productive 

area in the last 20 years (USDA, 2022).
Field inspections and laboratory analyses 

conducted to detect diseases such as HLB using the 
polymerase chain reaction (PCR) method are costly 
and laborious. Moreover, the spatial variation, the 
inaccessibility of the field, and environmental 
factors make traceability a challenging task (LI et 
al., 2015; GARZA  et al., 2020). Since HLB and 
other diseases cause leaf changes that result in 
visual indications such as yellowing and spots, the 
use of remote sensors with high spatial and spectral 
resolutions can contribute to a fast, accurate 
and, ideally, early detection of affected plants 
(NEUPANE; BAYSAL-GUREL, 2021).

Because optical remote sensing (RS) is based on 
interactions (absorption, transmission or reflection) 
between electromagnetic radiation (EMR) 
emitted by the Sun in the form of electromagnetic 
waves of different lengths (λ) and objects on the 
surface, which vary according to their biophysical 
properties, images obtained by remote sensors can 
be processed and analyzed to obtain spatialized 
information on crops, including changes caused by 
diseases (PONZONI et al., 2012).

The interaction between EMR and leaves 
can be analyzed chiefly through three channels 
captured by optical sensors: the visible channel 
(VIS), which involves the primary colors blue (B), 
green (G) and red (R) at wavelengths (λ) between 
400 and 720 nm; the near-infrared channel (NIR), 
at λ values between 720 and 1100 nm; and the 
medium infrared channel (MIR), between 1100 
and 3200 nm. Reflectance variations occur in 
these channels due to photosynthetic pigments 
(in VIS), the internal structure of leaves (in NIR) 
and the presence of water in the plant (in MIR) 
(PONZONI et al., 2012).

Thermal sensors can capture the EMR emitted 
by elements on the surface in the λ of the thermal 
infrared (TIR), between 3000 and 14000 nm, 
converting this information into temperature data. 
A key variable in plant physiological processes, 
temperature can undergo variations caused 
by structural and metabolic changes induced 
by diseases, and, therefore, capturing these 
variations with RS can be essential for production 
management (MESSINA; MODICA, 2020).

In the 1960s, spectral indices were developed 
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using aerial images and field observations. 
These indices are dimensionless radiometric 
measurements generated by equations that combine 
the spectral bands capable of “highlighting” specific 
characteristics of targets — such as vegetation 
— in the images and also providing information, 
for example, about leaf area, green biomass, 
chlorophyll, and moisture content, facilitating the 
modeling and analysis of the state of the plants’ 
health, growth and development (HATFIELD  et 
al., 2019; PONZONI et al., 2012).

In recent years, the potential of RS disease 
monitoring has been applied to several crops, 
such as potatoes (AFZAAL  et al., 2021), 
avocados (HARIHARAN et al., 2019), and pines 
(DENG  et al., 2020). In general, the authors 
combine multispectral and hyperspectral images 
— very high spectral resolution, in hundreds of 
short and contiguous bands —, spectral indices, 
machine learning (ML), and deep learning (DL) 
algorithms to detect diseases and contribute to the 
management and application of inputs at variable 
rates (NEUPANE; BAYSAL-GUREL, 2021). 

ML algorithms, such as Random Forest (RF) 
and Support Vector Machines (SVM), and DL 
algorithms, such as Convolutional Neural Networks 
(CNNs) and Radial Basis Function (RBF), are 
techniques capable of learning from training data 
of a given problem to automate the generation of 
analytical models and solve related regression and 
classification tasks (JANIESH et al., 2021).

We must briefly describe the general script for 
collecting and processing images with RS: i) the 
light reflected by the leaves of plants is detected 
by sensors (VIS, multispectral, hyperspectral, or 
thermal); ii) images in the different bands captured 
by the sensor are obtained; iii) after the processes of 

normalization and extraction through algorithms, 
the volume of data is reduced; iv) the multibands 
are then stacked; and v) different automation 
techniques are employed in the classification 
process (TERENTEV et al., 2022).

In this sense, the present study aims to assess, 
through a literature review, how RS has been used 
in the identification of diseases that specifically 
affect citrus growing in Brazil and in the world, 
identifying tools, analysis techniques, and 
perspectives based on the results of the studies 
analyzed in this article.

MATERIAL AND METHODS

This article is based on the RBS Roadmap 
methodology structured by Conforto et al. (2011), 
which consists of three phases, subdivided into a 
few steps: 1) entry, the definition of search terms for 
scientific articles; 2) processing, the verification of 
the relevance of said articles; and 3) exit, digging 
into the papers and synthesizing the findings of the 
bibliography. The list of phases that make up each 
of these steps is available in Table 1, while Table 2 
details the criteria.

In the processing phase, a search was 
conducted on the Web of Science database, the 
oldest database of scientific publications, used and 
cited worldwide, covering about 34,000 journals 
(BIRKLE et al., 2020), and on Scopus, the most 
comprehensive database of abstracts and citations 
for peer-reviewed literature (AL-KHOURY et 
al., 2022), which returned 38 articles published 
between 2012 and 2022. Excluding duplicates 
— those not related to the application of remote 
sensing in the detection of diseases in citrus crops 
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Table 1. Conducting a systematic literature review based on the RBS Roadmap

1.	 Entry 2.	 Processing 3.	 Output
1.1 Problem 2.1 Conducting the search 3.1 Warnings
1.2 Goal 2.2 Analysis of results 3.2 Registration and filing
1.3 Primary sources 2.3 Documentation 3.3 Synthesizing results
1.4 Search strings 3.4 Theoretical models
1.5 Inclusion criteria
1.6 Qualification criteria
1.7 Method and tools
1.8 Timeline
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— in addition to articles in Mandarin, 12 studies 
were selected for this analysis.

RESULTS AND DISCUSSION

 Amount, period and origin of the analyzed studies 
In the period selected for this study, there was a 

concentration of research in 2020, as shown in Figure 
1. Out of the 12 studies analyzed, 8 (66%) were 
published between 2018 and 2020. Furthermore, 
11 studies aim to detect greening (HLB), the most 
destructive citrus disease worldwide, which has no 
known cure and no variety is resistant or immune 
(MORIYA et al., 2019; GARZA et al., 2020).

Regarding the origin of the studies, there was 

a large concentration of publications from China 
(5 articles), linked to the China Agricultural 
University, and also from the United States (4 
studies), developed by the Citrus Research and 
Education Center at the University of Florida. The 
global distribution of these publications can be 
seen in Figure 2. 

The concentration of research in China can be 
explained by the fact that it is the world’s largest 
producer of citrus and one of the most affected 
countries by HLB. In 2022–2023, the country is 
expected to produce around 33.5 million tons of 
oranges and tangerines (USDA, 2022). The USA, 
the country with the second highest number of 
papers on the subject, is the fifth largest citrus 
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Figure 1. Distribution by publishing year of articles focusing on the detection of diseases in citrus crops 
using remote sensing

Table 2. RBS Roadmap input information focusing on the detection of diseases in citrus crops using remote 
sensing

Steps Details
1.1 Problem Is remote sensing a reliable non-destructive tool for detecting citrus diseases?

1.2 Goal
Producing a systematic literature review of scientific articles that use RS to detect 
diseases in citriculture

1.3 Primary sources Web of Science and Scopus databases

1.4 Search strings
“Citriculture AND disease AND remote sensing”, “Citriculture AND disease AND 
UAV”, “HLB AND remote sensing”, “HLB AND UAV”

1.5 Inclusion criteria
a) Only articles;
b) publication between 2012 and 2022

1.6 Qualification criteria Articles with a descriptive methodology
UAV — Unmanned Aerial Vehicle
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producer in the world, and also one of the most 
affected countries by the disease, suffering a 
reduction of over 60% in production in the last 20 
years as a result of the spreading of the disease and 
the worsening climate conditions (USDA, 2022).

Platforms, sensors and resolutions 
In the selected studies, we found images being 

captured by orbital, suborbital and terrestrial 
sensors. At the orbital level, two studies used 
images from the North American commercial 
satellite WorldView-2, attached to a multispectral 
sensor (MS) that operates in 8 bands between 400 
and 1040 nm; 1.85 m of spatial resolution and 
1.1 days of temporal resolution, in addition to a 
panchromatic band of 0.46 m.

Another two studies were carried out using 
multi and hyperspectral sensors on board small 
manned aircrafts, which flew over the experimental 
fields at approximately 650 m altitude, resulting in 
a spatial resolution of 0.5 m. Multirotor unmanned 
aircrafts, or Unmanned Aerial Vehicles (UAVs), 
used in 8 studies (66%), were the leading imaging 
platform chosen to map the occurrence of diseases 
in citrus groves.

UAVs are flexible and efficient imaging 
platforms, seeing as they can be equipped with 
various sensors and fly over the terrain at low 
altitudes (20–100 m, mainly), resulting in images 
of very high spatial resolution (in centimeters), in 
addition to presenting a higher frequency of imaging 
and being easy to operate (MANFREDA  et al., 
2018). Finally, a study was conducted exclusively 
using a terrestrial hyperspectral sensor attached to 
a utility vehicle.

Regarding spectral resolutions, the sensors 
operated between the wavelengths of 400 and 1000 
nm, in different configurations: multispectral, from 
4 to 12 bands; hyperspectral, from 25 to 128 short 
bands; and visible (only B, G and R), in addition 
to a test that used a sensor capable of operating in 
thermal infrared, aiming to capture the temperature 
variation of plants infected by diseases. Figure 3 
shows the distribution of studies by types of sensor, 
including visible (RGB), thermal, multispectral 
and hyperspectral. Figure 4, in turn, illustrates 
some examples of platforms and sensors used in 
the selected studies.

None of the selected studies used the Light 
Detection and Ranging (LIDAR) optical and 
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							              Source: Prepared by the authors

Figure 2. Worldwide distribution of the analyzed studies focusing on the detection of diseases in citrus 
crops using remote sensing
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active sensor technology. LIDAR sensors, which 
can operate in near and mid-infrared, emit laser 
pulses, calculating the distance of an imaged 
object using the elapsed time between the light 
traveling until its reflection back to the sensor. 
This technology has been tested in the detection 
of diseases because it includes depth as an 
analysis variable, generating three-dimensional 
information; on the other hand, it implies a high 
cost of acquisition and specificities of operation 
and processing (NEUPANE; BAYSAL-GUREL, 
2021).

Analysis methods and main results
After the analysis of the selected studies, it 

was concluded that the leading methodology for 
detecting diseases in citrus cultivation involves 
the application of classification algorithms based 
on machine learning to generate maps identifying 
healthy plants and plants affected by the disease in 
question, as seen in Garcia-Ruiz et al. (2013), Li et 
al. (2015), Moriya et al. (2019) and others, which 
will be discussed ahead.

Figure 5 illustrates the most common process for 
generating disease detection maps in citriculture, 
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Figure 3. Types of remote sensors used to detect diseases in citrus crops found in this study

Figure 4. Examples of platforms and remote sensors used to detect diseases in citrus crops in the selected 
studies. (A) HiSystems multirotor UAV attached to a miniMCA6 multispectral sensor, Tetracam; 
(B) WorldView-2 satellite (provided for illustrative purposes); (C) single-engine fixed-wing 
aircraft (provided for illustrative purposes); (D) utility vehicle attached to MCA multispectral and 
thermal sensors, MIC-005, Tetracam Inc.; (E) MicaSense Red-Edge sensor that can be attached 
to a UAV; (F) AISA EAGLE VNIR hyperspectral image sensor that was attached to a manned 
aircraft; (G) SlantRange 3P multispectral sensor that can be attached to a multirotor UAV
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based on the selected studies, which were carried 
out mainly with passive, optical and thermal 
sensors:
1. Procuring field data and information to validate 

remote sensing prediction models: this data 
concerns the geolocation of healthy and infected 
plants, and is acquired through the use of 
high-resolution Global Positioning System by 
Satellite (GPS) devices and laboratory analyses 
of the leaves, in addition to spectroradiometer 
data, containing the reflectance of targets 
acquired with spectroradiometers in the field or 
laboratory (Figure 5.1);

2. Procuring aerial or orbital images, mainly with 
UAVs (Figure 5.2): it is worth mentioning that 
using long time series is not common, and 
images usually come from one or two dates;

3. The images can be used to extract primary 
reflectance values in the different bands and, 
more commonly, are used to generate spectral 
indices (Figure 5.3);

4. Statistical analysis of band values (optical and 
thermal) and spectral indices is performed 
to look for significant differences between 
healthy and diseased plants, or they can become 
input data in predictive models generated with 
different classification algorithms, such as 
Support Vector Machine (SVM) and Spectral 
Angle Mapper (SAM), among others (Figure 
5.4);

5. Maps indicating the spatial distribution of 
healthy or infected plants — or detection maps 

— are generated, which may or may not specify 
the stage of the disease or the presence of 
symptoms (Figure 5.5).

Over 50 spectral indices figure in the selected 
studies being used to check for significant 
variance between healthy and diseased plants, 
and also comprising the input database for 
classification models. It is important to emphasize 
that hyperspectral sensors allow the creation of 
variations of an index with different wavelengths 
of the same band, since they can capture data in 
narrower bands. Thus, the Normalized Difference 
Vegetation Index (NDVI), for example, can be 
drawn with different NIR and R band combinations. 
Table 3 shows some vegetation indices considered 
more efficient in their differentiation between 
healthy citrus plants and those affected by diseases 
by the selected studies.

Regarding supervised classification, a 
methodology that utilizes algorithms to recognize 
predetermined classes — such as the occurrence of 
a specific disease (e.g., yes or no) —, 16 classifiers 
(or algorithms) were identified. However, the most 
commonly used in the detection of diseases in 
citrus groves were SVM (in four studies) and SAM 
(in four studies); in addition to Linear Discriminant 
Analysis (LDA), k-Nearest Neighbors (KNN), 
Random Forest (RF), neural networks (NN) 
and MahaDist, all appearing in two studies. The 
performance of these classifiers varied from case 
to case. 
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									            Source: Prepared by the authors

Figure 5. Example of a common scheme for procuring and analyzing remote sensing data to generate 
classification models and detection maps of disease occurrence in citrus crops. The process is 
illustrated with an UAV acquisition platform, but it can be carried out with other platforms 
(orbital, suborbital and terrestrial)
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Garcia-Ruiz et al. (2013) compared the detection 
of infected trees through images obtained by two 
different aerial platforms: (1) an aircraft equipped 
with an Aisa Eagle Vnir hyperspectral sensor; and 
(2) a UAV, capable of flying only at low altitudes 
with a miniMCA6 multispectral sensor, Tetracam. 
The images captured by (1) and (2), shown in 
Figure 6, exhibit previously selected healthy (H) 
and infected (D) trees, illustrating the disparity 
generated by the different spatial resolutions. 
The focus of the study was a plantation in Florida 
(United States) of 17 hectares of Valencia oranges 
(Citrus sinensis valencia) that used the Swingle 
rootstock system, which is more resistant to 
diseases.

The authors (GARCIA-RUIZ et al., 2013) used 
six spectral bands (530, 560, 660, 690, 710, and 900 
nm) common to both sensors, and seven spectral 
indices (NDVI, GNDVI, SAVI, NIR - red (R), R/

NIR, green (G)/R and NIR/R), selected based on 
previous studies. The classifiers were SVM, LDA 
and Quadratic Discriminant Analysis (QDA). The 
highest accuracy in detecting diseased plants was 
85%, with a false negative rate of 11%.

The images obtained by UAVs provide up to 
100 times more pixels than those obtained from the 
plane, and this level of detail is due to the lower 
altitude while capturing images, since the scale of 
vertical aerial photography is inversely proportional 
to the height of the flight above ground level 
(JENSEN, 2009). However, altitude also explains 
the lower accuracy (74%) and higher figure of false 
negatives (45%) in images obtained by airplanes. 
Nevertheless, both plane and UAV images made it 
possible to detect affected plants. Figure 7 reveals 
that the average reflectance acquired via UAV 
and manned aircraft differs between healthy and 
diseased plants (GARCIA-RUIZ et al., 2013).
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Table 3. Examples of vegetation indices used to map the occurrence of diseases in citrus groves in the 
selected studies

Vegetation Index Acronym Equation References
Anthocyanin Reflectance 

Index
ARI R (550 nm) / R (700 nm)

Abdulridha et al. 
(2019)

Chlorophyll Index CI (NIR – G) -1
Pourazar et al. 

(2019)

Chlorophyll Vegetation Index CVI NIR*(R / G²)
Deng et al. (2020); 
Lan et al. (2020)

Green Normalized Difference 
Vegetation Index

GNDVI (NIR – G) / (NIR + G)
Abdulridha et al. 

(2019); Pourazar et 
al. (2019)

Green Normalized Difference 
Vegetation Index

GNDVI_RE (RE – G) / (RE + G) Li et al. (2015)

Modified Soil Adjusted 
Vegetation Index

MSAVI
((2 × NIR+1) − √ 

((2×NIR + 1)2 − 8 × (NIR − R) 2))) / 2
Chang et al. (2020)

Red Edge Normalized 
Difference Vegetation Index

NDRE (NIR – RE) / (NIR + RE)
Abdulridha et al. 

(2019)
Normalized Difference 

Vegetation Index
NDVI (NIR – R) / (NIR + R)

Deng et al. (2020); 
Lan et al. (2020)

Structure Intensive Pigment 
Index

SIPI (NIR – B) / (NIR – R)
Pourazar et al. 

(2019); Lan et al. 
(2020)

Simple Ratio Index SRI NIR (ou RE) / R Li et al. (2015)
Transform chlorophyll 

absorption in reflectance 
index

TCARI
3*[(R740 − R651) – 0,2 (R740 − 

R581)*(R740/R651)]
Abdulridha et al. 

(2019)

NIR — near infrared; R — red; G — green; B — blue; RE — Red Edge
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Li et al. (2013) sought to compare the results 
of HLB detection in orange trees with an AISA 
EAGLE VNIR Hyperspectral Imaging Sensor 
attached to an aircraft flying at 640 m above 
the ground in Florida with those obtained with 

multispectral images from the WorldView-2 
(WV-2) satellite on the same date. The authors 
developed a new methodology for the utilization 
of the SAM classification algorithm,  known as 
Extended spectral angle mapping  (ESAM). The 
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						            Source: Garcia-Ruiz et al. (2013)

Figure 6. On the left, the image captured by a mini MCA6 multispectral sensor on board a manned aircraft 
flying at a height of 640 m, with a spatial resolution of 0.5 m/pixel. On the right, the same 
experimental plot was imaged by a multispectral sensor with a UAV at a height of 100 m, with a 
spatial resolution of 5.45 cm/pixel

							                      Source: Garcia-Ruiz et al. (2013)

Figure 7. In digital numbers (DN), average reflectance of healthy and HLB-affected plants were obtained 
with multispectral sensors on board a UAV, at 100 m height, and with a manned aircraft at 640 m
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method involves the following steps: i) apply a 
smoothing filter to the spectral data (Savitzky-
Golay) to remove noise data and outliers; ii) 
use the SVM algorithm to separate citrus from 
background pixels; iii) employ the spectral linear 
vertex component analysis (VCA) method to select 
better endmembers, that is, cleaner pixels; iv) 
apply the SAM algorithm to classify healthy and 
HLB-affected plants; v) and, finally, in order to 
remove false-positives, filter the results using the 
maximum inflection point of the Red Edge (RE) 
band, at 720 nm, as a parameter. 

Regarding the results achieved with ESAM, 
Li et al. (2013) observed that the maturity of the 
plants has a strong influence over the predictive 
capacity of the models. The accuracy of the models 
varied between 63% and 71% with plants in an 
early or intermediate stage of growth; on the other 
hand, ESAM identified the occurrence of HLB in 
mature plants with 86% accuracy. In addition to 
the fact that younger trees may be less susceptible 
to diseases, the authors believe that the canopy 
volume, which is larger in more mature plants, 
contributes to a lower spectral mixing of the 
pixels. In contrast, background pixels have a more 
substantial influence on less-developed canopies. 
Furthermore, the proposed method outperformed 
other algorithms, such as the original SAM, 
MahaDist and K-means. 

Sankaran  et al. (2013) used a multispectral 
sensor (MIC-005) and a thermal sensor (Tau 640) 
attached to a utility vehicle, suspended 3 m from 
the canopy, to analyze the spectral response of 74 
Valencia orange trees (Citrus sinensis Valencia) in 
a grove in Florida. In order to find spectral variables 
to differentiate between healthy and HLB-affected 
plants, the authors tested the following spectral 
indices: structure insensitive pigment index (SIPI), 
Vogelmann red-edge index (VOG), modified 
red-edge normalized difference vegetation index 
(m-NDVI), modified red-edge simple ratio (m-
SR), red-edge normalized difference vegetation 
index (RE-NDVI) and NDVI. The average 
reflectance of trees with HLB was significantly 
higher for infected healthy trees with RE-NDVI 
and NDVI. The supervised classification was based 
on reflectance values in the visible (near-infrared) 
and thermal bands. According to the authors, the 

classification algorithm that achieved the highest 
average accuracy and the highest specificity and 
sensitivity was SVM, which proved to be very 
advantageous due to its good self-adaptation, the 
need for a smaller volume of data for training, and 
a good level of accuracy. The study concluded that 
it is possible to detect diseases in plants with a low 
amount of data by utilizing the occurrence of stress 
as a verification factor — which can affect the 
canopy temperature — by using thermal cameras 
(SANKARAN et al., 2013).

Li  et al. (2015) used multispectral satellite 
images with ~2 m resolution captured by 
WorldView-2 to study the capability of detecting 
HLB in two Valencia orange (Citrus sinensis 
Valencia) plantations in Florida. Two libraries 
were created, based on field observations: the first 
one based on very high precision GPS location, 
and the second with prior knowledge of spectral 
characteristics of plants in the field. The authors 
also generated 12 spectral indices and evaluated 
the HLB detection capability of the following 
classification algorithms: Minimum Distance 
(MinDist), Mahalanobis Distance (MahaDist), 
Spectral Angle Mapper (SAM), Spectral 
Information divergence (SID) and Mixture Tuned 
Matched Filtering (MTMF). 

The second library, comprised of the reflectance 
figures measured in the field, presented greater 
accuracy (average of 74%) than the first library 
(average of 69%), with a Kappa coefficient of 0.333, 
which only included the geolocation. Despite the 
difference between the two libraries, the results 
indicate the promising potential of high-resolution 
multispectral satellites for HLB detection. Even 
without field spectral data, the NDVI, NDVI_2, 
NDVI_RE, SRI_2 and GNDVI_2 indices differed 
significantly between healthy and diseased plants 
(LI et al., 2015). 

Richard et al. (2018) carried out ecological niche 
modeling, testing the contribution of phenological 
variables, such as average diurnal temperature 
interval and precipitation in the wettest/hottest 
quarter; and vegetation phenological variables 
derived from spectral indices — e.g., increasing 
rate at the beginning of the season, falling rate at 
the end of the season — to predict the distribution 
of HLB vectors in citrus growing areas in Kenya. 
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Phenological data was obtained using the Moderate-
Resolution Imaging Spectroradiometer (MODIS) 
multispectral sensor, in resolutions of 250 to 
1000 m, on board the Terra and Aqua satellites. 
Using the MaxEnt algorithm, combinations of 
land observation data were tested, such as metrics 
related to phenology, climatic and topographical 
information, which returned a detection accuracy 
of 92% and revealed that annual precipitation has 
an importance of 77% over the prediction of the 
occurrence of HLB vectors (RICHARD et al., 
2018). 

Abdulridha  et al. (2019) focused on the 
identification of citrus canker in Florida Sugar 
Belle oranges (Citrus reticulata Clementine x 
Minneola) using the Radial Basis Function (RBF) 
and K-Nearest Neighbors (KNN) classification 
algorithms. The detection carried out in situ and 
in the laboratory led to the determination of the 
following stages of the disease: i) asymptomatic, 
leaves without symptoms; ii) initial phase, small 
lesions; and iii) late phase, brown lesions. First, 
the Resonon Pika L 2.4 hyperspectral sensor was 
employed to measure the reflectance of leaves 
and fruits in the three stages of the disease under 
laboratory conditions (indoors). The same sensor 
was then mounted onto a UAV equipped with 
V-NIR lenses and GPS, which flew over the study 

area — an experimental field at the University of 
Florida, 30 m above the ground (outdoors). Using 
indoor and outdoor images, 31 spectral indices 
were generated, and then utilized in the RBF and 
KNN classifications (ABDULRIDHA et al., 2019). 

For detection under laboratory conditions, the 
Water Index (WI) was the most accurate, while 
the Anthocyanin Reflectance Index (ARI) and 
Transform Chlorophyll Absorption in Reflectance 
Index (TCARI) were the most efficient among 
the UAV indicators. The significant difference 
in the reflectance value of near-infrared bands, 
mainly between 800 and 900 nm, between leaves 
at different stages contributes to better detection 
performance (Figure 8). With UAV data, it was 
possible to detect the occurrence of canker in citrus 
crops with up to 100% accuracy (RBF method) 
(ABDULRIDHA et al., 2019).

Moriya  et al.  (2019) verified the existence 
of diseased plants in a field of 4,777 Christmas 
orange trees (Citrus Sinensis) with Rangpur 
Lemon (Citrus bigarade) grafting in Santa Cruz 
do Rio Pardo - SP (Brazil). A hyperspectral Rikola 
model DT-0014 camera was on board a UAV at 
an altitude of 800 m, and the images it captured 
were processed to minimize the Bidirectional 
Reflectance Distribution Function (BRDF). 
The authors generated detection maps of plants 
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						            Source: Abdulridha et al. (2019)

Figure 8. Different reflectance rates at different wavelengths in various stages of canker infection in citrus 
cultivation
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with HLB symptoms using the SAM algorithm, 
reaching an accuracy of 61.2%. The authors raised 
the hypothesis that the accuracy could be greater 
if there were no trees of other species bordering 
the grove, which may have induced classification 
errors. It is essential to highlight that the overflight 
was carried out at 800 m. In general, other authors 
performed flights at altitudes of up to 100 m, 
resulting in higher spatial resolution, which may 
reduce the observed spectral mixing and minimize 
classification confusion (MORIYA et al., 2019). 

Pourazar et al. (2019) evaluated the potential of 
multispectral images captured with the MicaSense 
RedEdge sensor attached to a multirotor UAV to 
distinguish HLB-infected plants from healthy ones 
in two different study areas. After a selection stage, 
the authors observed that the R, NIR and RE bands 
showed a more significant difference between 
healthy and sick objects. The model generated with 
an RF algorithm, which included these bands and 
other derived spectral indices, achieved an accuracy 
of 85% detecting diseased plants. Figure 9 shows 
the final detection map of HLB-affected plants. 
Furthermore, they showed that the radiometric 
calibration step, performed with a calibration target 
from the sensor itself, did not improve the results. 

However, the authors emphasized that calibration 
is only necessary for data obtained on the same 
date, under the same atmospheric and lighting 
conditions.

Chang  et al. (2020) also used the MicaSense 
RedEdge multispectral camera, on board a UAV, to 
analyze variations in morphological characteristics 
and the spectral indices of infected and healthy 
canopies of Hamlin oranges in Florida. The 
authors showed that canopy volume, effectively 
estimated with UAV images, is a variable related 
to HLB infestation. Furthermore, spectral indices 
of healthy and infected trees presented statistical 
differences — mainly the NDVI and indices based 
on RE. 

Deng et al. (2020) analyzed the stage of HLB 
symptoms with a Cubert S185 hyperspectral camera 
attached to the DJI Matrice 600 Pro UAV, at 60 m 
from Ponca tangerine groves (Citrus reticulata 
Blanco) in Guangdong Province, China. All of 
the studies mentioned so far obtained information 
about the health of the trees via PCR tests. 
Moreover, the authors also resampled the bands 
from data collected from a terrestrial Hyperspectral 
sensor — the ASD FieldSpec — to analyze the 
correlation of the two data sources, and carried 
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						               Source: Adapted from Pourazar et al. (2019)

Figure 9. Final detection map of HLB occurrence in citrus groves, generated with spectral indices of UAV 
images and Random Forest algorithm
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out a classification with the neural network sparse 
autoencoder (SAE) to detect infected plants. The 
degree of correlation between data obtained with 
a UAV and FieldSpec was 0.96 for both healthy 
and infected canopies. The neural network based 
on multiple layers, using 62 vegetative indices 
and 15 spectral parameters, showed an accuracy 
of 99.72% in the detection of infected plants, both 
in the test and validation subsets. The classifier 
consistently managed to represent the extent of 
HLB in canopies, differentiating those with more 
or less than 50% of their canopies affected, thus 
indicating the stage of the infection (DENG et al., 
2020).

Garza  et al. (2020) evaluated the correlation 
between remote sensing data and biophysical-
chemical variations of HLB and gummosis in 
grapefruit (Citrus paradisi Macf) using Swingle-
type rootstocks through a camera equipped with an 
RGB system (true-color) attached to a UAV. The 
results indicate that variations in the triangular 
vegetation index (TGI) are partially explained by 
differences in chlorophyll content, leaf area index 
and nutritional status (Na, Fe, Ca and K) of plants 
affected by HLB or gummosis, concluding that the 
TGI value was higher in unaffected plants. Despite 
not applying any algorithm for the classification 
or geolocalized detection of affected plants, the 
authors revealed that a low-cost UAV sensor system 
using only the R, G, and B bands can generate 
variables to supply classification algorithms.

Lan et al. (2020), with a multispectral camera 
(ADClite) attached to a DJI M100 UAV flying 60 
m over a grove with 334 orange trees in China, 
obtained images in G, R and NIR, and performed 
correlation analysis in derived spectral indices. This 
data was used to feed several Machine Learning 
algorithms, and also to detect trees with HLB. The 
authors observed that, despite the wide variety of 
indices, the high correlation between them can be 
counterproductive, so the application of linear and 
non-linear methods of dimensionality reduction, 
such as principal component analysis (PCA) and 
AutoEnconder, can be fundamental to improve 
the efficiency of the models. Among the analyzed 
classifiers, AdaBoost and neural networks (NN) 
presented the most robust performance, with a 
detection rate of 97%.

The selected studies indicate that ML and DL 

algorithms can efficiently detect diseases in citrus 
trees with multi and hyperspectral images. Deep 
learning models, in general, perform better when 
confronted with machine learning algorithms, such 
as RF and SVM, for example, a finding that applies 
for the monitoring of other crops (NEUPANE; 
BAYSAL-GUREL, 2021). However, DL neural 
networks are more demanding in terms of training 
data volume, and their performance is sensitive 
to hyperparameter adjustment (NEUPANE; 
BAYSAL-GUREL, 2021).

In comparison, the very high-resolution images 
obtained from UAVs contributed to generating 
more accurate classification models about the data 
captured by small manned aircrafts and, especially, 
satellite images. Thus, the studies analyzed here 
reaffirmed the importance of UAVs for precision 
agriculture.

Furthermore, it is essential to highlight that 
during the analysis, RE bands — pure or in spectral 
indices — were the most important variables to 
the production of more accurate models to detect 
diseases in citrus groves. The Red Edge is a 
region of the electromagnetic spectrum, centered 
approximately at 700–770 nm, in the transition 
between chlorophyll absorption at red wavelengths 
and leaf/canopy scattering at NIR wavelengths, 
with a degree of reflectance that is more sensitive 
to different levels of stress from various causes 
(EITEL  et al., 2011; IMRAN  et al., 2020). The 
RE bands, increasingly applied in the agricultural 
context, are promising for the early detection 
of diseases, being available in orbital sensors 
such as the Multispectral Instrument (MSI) from 
Sentinel-2, and in many mounted sensors for 
precision agriculture. 

Finally, it is vital to note that the studies were 
conducted with citrus and rootstock varieties. 
Valencia oranges are more resistant to HLB on the 
Carrizo rootstock (SANTOS, 2013), although there 
are no conclusive results under other conditions. 
Storey & Walker (1998) state that the grafting 
system affects root permeability and, therefore, 
the level of spreading, which can impact detection 
by remote sensing. Further studies could track 
variations that may result from the type of crop and 
rootstock. Chart 1 summarizes variables, methods 
and main results from the selected studies.

CASTRO, V. H. M. et al.
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Chart 1. Diseases, platforms, spectral resolution, methods and main results seen in the selected studies, 
with the objective of detecting via remote sensing plants and citrus canopies affected by diseases

Reference Disease(s) Platform(s)
Spectral 

resolution
Methods/Classifiers Main results

Garcia-
Ruiz et al. 

(2013)
HLB

Single-engine 
aircraft and 
multirotor 

UAV

530–900 nm 
(Multispectral)

Classification: 
Support Vector 

Machines (SVM), 
Linear Discriminant 

Analysis (LDA) 
and Quadratic 
Discriminant 

Analysis (QDA)

NIR-R index and 710 nm reflectance show 
larger difference margins between healthy 
and diseased plants. Classifications with 
SVM achieve higher accuracy and lower 
false negative rates. Using a UAV, the false 
negative rates drop by up to 30%.

Li et al. 
(2013)

HLB
Aircraft; 
satellite 

(WorldView-2)

400–1000 nm 
(Hyperspectral 

and 
Multispectral)

Classification: 
Extended spectral 

angle mapping 
(ESAM), K-means 

and MahaDist

ESAM is a method capable of outperforming 
other classification algorithms, reaching 
an accuracy of up to 86% in detecting the 
occurrence of HLB in citrus groves. The 
selection of pure pixels and the filtering 
of false positives with the maximum 
inflection point of the Red Edge band were 
fundamental steps for the results. The 
canopy development stage interferes with 
the models’ performance.

Sankaran et 
al. (2013)

HLB
Ground 
sensors

440–900 nm, 
including 
thermal 

(Multispectral)

Classification: 
LDA, QDA, Bagged 
Decision Tree (BDT) 

and SVM

Bands at 560 nm and 710 nm show good 
separability rates for affected plants. 
Variation in plant temperature caused by 
stress can be captured with the thermal band. 
SVM led to models with higher detection 
accuracy and lower false negative rates.

Li et al. 
(2015)

HLB
Satellite 

(WorldView-2)
450–800 nm 

(Multispectral)

Rating: Minimum 
Distance (MinDist), 

Mahalanobis 
Distance (MahaDist), 

Spectral Angle 
Mapper (SAM), 

Spectral Information 
divergence (SID), 

Mixture Tuned 
Matched Filtering 

(MTMF)

All IVs tested showed statistically 
significant differences between healthy and 
diseased plants when supplemented with 
field spectrometry. Without this information, 
only NDVI1, NDVI2, NDVI_RE, SRI2 
and GNDVI2 differ significantly. Among 
the classifiers, MahaDist achieved the best 
performance, with an accuracy of 81%. The 
classification with satellite images with a 0.5 
m resolution benefits from the spectral data 
obtained with a terrestrial sensor.

Abdulridha 
et al. 

(2019)
Canker

Multirotor 
UAV

400–1000 nm 
(Hyperspectral)

Classification: Radial 
Basis Function 

(RBF) and k-Nearest 
Neighbor (KNN)

Canker detection presented accuracy rates 
higher than 90% with RBF and KNN, mainly 
the former. The ARI and TCARI indices 
present better performance for detection 
with a UAV. Detection is more accurate with 
mature and symptomatic plants.
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Moriya et 
al. (2019)

HLB UAV
500–900 nm 

(Hyperspectral)

Rating: Spectral 
Angle Mapper 

(SAM)

The final map showed an accuracy of 61% in 
detecting plants with HLB symptoms.

Pourazar et 
al. (2019)

HLB
Multirotor 

UAV

B, G, R, 
RE, NIR 

(Multispectral)

Classification: 
Random Forest (RF)

Use of spectral bands and 12 spectral indices 
led the RF to detect infected plants with 
producer and user accuracy above 92%.

Chang et 
al. (2020) 

HLB UAV
560–830 nm 

(Multispectral)

Correlation analysis 
and linear regression; 

Student’s T test

Structural traits such as height, canopy 
diameter and canopy volume, factors to 
differentiate between healthy and diseased 
plants, can be estimated with an accuracy 
of up to 88% with high-resolution UAV 
multispectral images. The canopy volume 
of healthy plants is up to 2 times greater 
because HLB impairs vegetative growth. 
The NDVI, NDRE, MSAVI and especially 
CI indices vary significantly between 
positive and negative plants tested for HLB.

Deng et al. 
(2020)

HLB
Multirotor 

UAV
450–950 nm 

(Hyperspectral)

Classification: SVM, 
stacked autoencoder 

(SAE) neural 
networks

Hyperspectral data collected on the ground 
and via UAV showed a correlation of 0.96. 
SVM is used for canopy extraction. The 
wavelengths of 468, 504, 512, 516, 528, 
536, 632, 680 and 688 contribute to a better 
detection capacity of the models. SAE 
models with 62 IVs and 15 canopy spectral 
parameters (e.g., peak, trough, location) 
yielded 99% accuracy in the detection of 
HLB.

Garza et al. 
(2020)

HLB and 
gummosis

UAV
580–670 nm 

(Visible)

Correlation analysis, 
Student’s t test and 
stepwise regression

Non-infected plants presented higher values ​​
of TGI, vegetation index generated only 
using the visible bands. TGI can explain the 
presence of gummose 61% of Na, Fe, Ca 
and K content variations. Although further 
analysis is required, the study showed that 
plants with HLB and gummosis can be 
monitored using low-cost UAV images.

Lan et al. 
(2020)

HLB
Multirotor 

UAV
G, R, NIR 

(Multispectral)

Classification: 
SVM, KNN, logistic 
regression (LR), RF, 

Neural Networks 
(NN) and AdaBoost

AdaBoost models and Neural Networks 
supplied with spectral indices are appropriate 
for the detection of affected plants, with 
accuracy rates of 97%. The variable 
selection step with linear and non-linear 
methods, such as PCA and AutoEnconder, 
is fundamental to reducing redundancies 
and dimensionality. Different stages of the 
disease lead to variability in the models.
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CONCLUSIONS 

•	 The scientific articles selected from the 
international databases Scopus and Web of 
Science indicate the efficiency and feasibility 
of optical and thermal sensors for the detection 
and monitoring of citrus diseases, especially 
those mounted in UAVs, due to the extremely 
high spatial resolution. The results from these 
studies revealed that Red Edge (RE) and near-
infrared (NIR) bands and derived indices are 
more efficient in the detection of diseases, 
since their reflectance varies between healthy 
and infected canopies. Algorithms based on 
machine learning (ML) and deep learning 
(DL) present good performance rates and 
can be used to detect citrus diseases. For 
more complex problems, such as detection at 
different stages of infections, deep learning is 
a more appropriate choice. 

•	 However, there are challenges for the general 
use of this tool: the variations resulting from 
a smaller amount of spectral bands, the high 
cost of acquiring equipment for operation 
and processing, as well as the acquisition of 
sensors, especially hyperspectral. Although 
it is possible to state, based on the analyzed 
literature, that images with higher spatial 
resolution — such as those obtained by 
unmanned aircrafts (UAVs) — present better 
results, the ability to detect diseases in the 
early stages, especially without symptoms, is 
still not conclusive. 

•	 Finally, the presence of only one study carried 
out in Brazil in the international databases 
Scopus and Web of Science, based on the search 
criteria adopted, suggests the need to expand 
the literature review to other databases, such as 
Portal de Periódicos Capes, and to carry out 
new studies of this nature in the country.
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