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ABSTRACT

The principal weeds in wheat cultivation are black oats and ryegrass and their control is generally 
performed without considering the spatial variability of the density of weed infestation. One 
way to identify weed species is by analyzing spectral curves of the targets. The objective of this 
work was to evaluate the spectral curves of wheat, black oats and ryegrass to identify which 
wavelengths are able to distinguish these species. The experiment was set using the species: 
black oats, ryegrass and wheat. Each species was sown in individual experimental plots in a 
completely randomized design with nine replications. HandHeld 2, ASD® spectroradiometer 
with 325-1075 nm spectral range was used to perform readings at full bloom stage. Then, the 
reflectance spectral data were grouped into eight spectral bands: violet, blue, green, yellow, 
orange, red, red edge and near infrared. Descriptive statistics of reflectance of the targets as well 
as analysis of variance (p<0.05) and test of Tukey for comparison of the means (p<0.01) were 
performed using the reflectance measurement of each spectral band. The results showed that 
the yellow and orange spectral bands obtained higher capacities of differentiation of the species 
under study. It can be concluded that the analysis of spectral curves of target of black oat and 
ryegrass weeds and wheat crop makes it possible to differentiate species in full bloom stage.
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CURVAS ESPECTRAIS PARA IDENTIFICAÇÃO DE PLANTAS DANINHAS NA 
CULTURA DO TRIGO

RESUMO

As principais plantas daninhas no cultivo de trigo são a aveia preta e o azevém e seu controle 
de forma geral são realizados sem levar em consideração a variabilidade espacial da densidade 
de infestação das plantas daninhas. Uma forma de identificar as espécies infestantes é através 
da análise de curvas espectrais dos alvos. O trabalho tem como objetivo avaliar as curvas 
espectrais de trigo, aveia preta e azevém para identificar quais comprimentos de onda são 
capazes de distinguir essas espécies. O experimento foi implantado utilizando as espécies: 
aveia preta, azevém e trigo. Cada espécie foi semeada em parcelas experimentais individuais, 
em delineamento inteiramente casualizado, com 9 repetições. Foi utilizado espectrorradiômetro 
HandHeld 2, ASD® com faixa espectral de 325-1075 nm para realizar as leituras no estádio de 
florescimento pleno. Posterirormente os dados espectrais de reflectância foram agrupados em 
8 bandas espectrais: violeta, azul, verde, amarelo, laranja, vermelho, red edge e infravermelho 
próximo. Foi realizada a estatística descritiva da reflectância dos alvos bem como a análise 
de variância (p<0,05) e teste de comparação de médias Tukey (p<0,01) utilizando a medida 
da reflectância de cada banda espectral. Os resultados demonstraram que as bandas espectrais 
de amarelo e laranja obtiveram maiores capacidades de diferenciação das espécies de estudo. 
Pode-se concluir que a análise de curvas espectrais de alvos da planta daninha aveia preta e 
azevém e a cultura do trigo possibilita diferenciar espécies em florescimento pleno. 

									                       THIS IS AN OPEN ACCESS
                                                                                                             						               ARTICLE UNDER THE CC BY

LICENSE CREATIVE COMMON     

https://doi.org/10.13083/reveng.v28i.8154
https://orcid.org/0000-0001-8417-7978
https://orcid.org/0000-0001-8417-9009
https://orcid.org/0000-0001-9789-9400
https://orcid.org/0000-0001-8488-7507


52

POTT, L. P. et al.

INTRODUCTION

Weeds usually occupy agricultural systems 
spontaneously, ultimately interfering with the 
yield of crops of interest as they compete directly 
for natural resources, and indirectly by releasing 
allelopathic substances and impairing harvesting. 
Species such as black oats (Avena strigosa (Schreb)) 
and ryegrass (Lolium multiflorum (Lam.)), which 
are cultivated in several regions of Brazil, are 
considered weeds particularly in wheat (Triticum 
aestivum (L.)) crops (LAMEGO et al ., 2013).

The chemical method is commonly used in weed 
control with the use of herbicides. Post-emergence 
herbicide applications are carried out in total area 
in most cases, not considering the variability of 
weeds in agricultural areas.

The over-application of herbicides on areas 
without weed infestations results in environmental 
pollution and chemical residues (DASS et al., 
2017). Another reason for decreasing the amount 
of herbicides applied in the crops is the prevention 
of the rise in cases of weed resistance to the 
mechanisms of action of the herbicide (HEAP, 
2019).

Studies that use sensors to identify weeds in 
agricultural crops have been intensified in the 
last years. Targeted weed control can provide a 
reduction in the use of herbicide (PEÑA et al., 
2013; HUANG et al., 2018).

However, in order to conduct weed control 
in a direct way, its identification is necessary. 
Successful identification of one weed species 
compared to another depends on the presence or 
absence of minimal but measurable differences 
between species (FEILHAUER et al., 2017). 
Optical characteristics of the plant, such as contents 
of pigment, water and dry matter, play a role in how 
the plant will reflect light and can be manipulated 

to discriminate species.
Hyperspectral sensors have a spectral 

resolution of less than 20 nanometers. They usually 
characterize the electromagnetic spectrum within 
the 400-2500 nm range, which encompasses the 
visible, near and mid infrared areas (MIRIK et 
al., 2013), which allows the generation of curves 
of spectral targets (LOUARGANT et al., 2018). 
In this sense, the objective of this work was to 
evaluate the spectral curves of wheat, black oats 
and ryegrass and to identify the most efficient 
wavelengths in distinguishing these species.

MATERIAL AND METHODS 

The experiment was conducted in Santa Maria, 
state of Rio Grande do Sul in an area owned by the 
Federal University of Santa Maria (UFSM), within 
the  geographic coordinates 29.7180º S, 53.7375º 
W and average altitude of 110 m. The climate 
in the area is classified as Cfa with hot summer 
(ALVARES et al., 2013). Paleudalf soil prevails in 
the area under study (EMBRAPA, 2013). 

The area in question had been managed under 
no-tillage system for over six years under the 
rotation of summer soybean and corn crops and 
winter crops of black oat and wheat. In relation 
to the management of the area, desiccation 
was performed using glyphosate herbicide at 
a dose of 2,160 g∙ha-1 of a.e. (acid equivalent). 
For application, it was used a CO2 pressurized 
backpack sprayer with fan-type tips that provided 
an application volume of 150 L ∙ ha-1.

The experiment had nine plots for each species, 
totaling 27 experimental units. Plot dimensions 
were 5 x 3 m, totaling 15 m2, in a completely 
randomized design (Figure 1).

Figure 1. Location and layout of the experiment and experimental units. 
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The wheat, black oat and ryegrass species were 
manually sown on June 3, 2017, in a 0.5-m row 
spacing, with a population of 250,000 plants ha-1. 
Fertilization was performed in topdressing with 
application of 200 kg ha-1 of the formula 10-20-
20 immediately after sowing. Nitrogen fertilization 
was also performed in topdressing using 100 kg ha-

1, using urea 30 days after the emergence of culture.
The spectral curves were mapped using 

the HandHeld 2, ASD® spectrum radiometer 
equipment, with wavelengths of 325-1075 nm. 
This sensor is classified as passive in reference to 
the source of power for the measurements, with a 
spectral resolution of 1nm. The wavelength range 
used for the analysis was 380-900 nm due to the 
noise at the extremes.

Reading was performed using Spectroradiometer 
when the crops were in full bloom. First, the 
equipment was calibrated in white plate so 
evaluation could be started. Reading of the target 
species in each plot were carried out. Measurements 
were made with the sensor in the zenith position in 
relation to the target, in a target-sensor distance of 
0.5 m. The readings were taken when the day was 
completely clear, with no clouds, around 12h00 
p.m. (UTC-3). For each plot, three readings were 
taken which were subsamples of the 9 plots of each 
species, totaling 27 readings for each species. Data 
were extracted from the equipment and previously 

analyzed using View Spec Pro software version 
6.0, ASD®.

Spectral data were set at the following band 
wavelengths: violet (380-450 nm), blue (451-49 5 
nm), green (496-570 nm), yellow (571-590 nm), 
orange (591 -620 nm), red (621-700 nm), red edge 
(700-750 nm) and near infrared (NIR) (751-900 n).

Descriptive statistics of reflectance of the 
target as well as analysis of variance (p <0.05) 
and the test of Tukey for comparison of the means 
(p <0.01) were performed using the reflectance 
measurement of each spectral curve. Graphs were 
also made to demonstrate the variation of the data 
observed through quartiles, boxplot. Statistical 
analyses were performed using R software (R 
CORE TEAM, 2018).

RESULTS AND DISCUSSION 

The readings provided support to generate the 
spectral curves, which related the wavelengths with 
their respective reflectances for each target where 
for certain wavelengths there are larger amplitudes 
of reflectance differences for the species under 
study (Figure 2).

Plant reflectance is ruled by the concentration 
and distribution of biochemical compounds, internal 
tissue structure, as well as the properties of the leaf 
surface (GAO et al., 2018). Therefore, differences 
in pigment concentration, inner structure, leaf 

Figure 2. Spectral curves for black oat, ryegrass and wheat at full bloom. n= 27.
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shape, among others that interfere with the optical 
properties allow the differentiation of plant species 
(LIPPERT et al., 2015; FEILHAUER et al., 2017).

The spectral curves of each species were 
grouped into the spectral bands for analysis. The 
descriptive analysis of the spectral bands for each 
species is shown in Table 1.

The more specific analysis of the spectral bands 
allows observing the difference in the reflectance 
they have for each band. It is also possible to 

observe that some bands have larger reflectance 
variations in target readings. The violet band 
achieved a greater variation of the data obtaining 
coefficient of variation (CV) of 22.9, 28.0 and 26%.

Table 2 shows the test of Tukey for comparison 
of the means (p <0.01) showing the yellow (571-
590 nm) and orange (591-620 nm) spectral bands 
with the highest statistical distinctions for the three 
species, therefore, those are the bands with the best 
efficiency for their distinctions.

Table 1. Descriptive statistics of spectral band reflectance for the three species under study.

Species
Band

Black Oat

Violet Bluel Green Yellow Orange Red Red Edge NIR

Mean 0.030 0.046 0082 0.092 0.088 0.085 0.280 0.453

Median 0.028 0.046 0.083 0.097 0.096 0.093 0.282 0.442

Minimum 0.022 0.030 0.058 0.063 0.059 0.053 0.225 0.393

Maximum 0.045 0.058 0.104 0.112 0.103 0.103 0.331 0.523

SD* 0.007 0.007 0.012 0.015 0.016 0.018 0.027 0.042

CV** (%) 22.9 16.0 15.1 16.8 18.7 21.7 9.6 9.2

Species
Band

Ryegrass

Violet Bluel Green Yellow Orange Red Red Edge NIR

Mean 0.012 0.016 0.039 0.037 0.029 0.022 0.184 0.332

Median 0.011 0.015 0.036 0.033 0.026 0.020 0.181 0.331

Minimum 0.008 0.012
0.020

0.031 0.029 0.024 0.017 0.146 0.265

Maximum 0.017 0.048 0.046 0.036 0.027 0.220 0.394

SD 0.003 0.003 0.007 0.007 0.005 0.004 0.029 0.051

CV (%) 28.0 20.4 17.5 17.8 17.3 18.9 15.7 15.3

Species
Band

Wheat

Violet Bluel Green Yellow Orange Red Red Edge NIR

Mean 0.019 0.026 0.067 0.064 0.051 0.035 0.305 0.557

Median 0.020 0.027 0.067 0.062 0.050 0.034 0.320 0.608

Minimum 0.013 0.019 0.057 0.056 0.046 0.031 0.240 0.411

Maximum 0.026 0.033 0.083 0.078 0.061 0.041 0.366 0.668

SD 0.005 0.005 0.008 0.006 0.004 0.003 0.048 0.107

CV (%) 26.0 20.1 12.2 10.0 8.9 8.921 15.8 19.3

*SD= Standard deviation. **CV= coefficient of variation. n=27.
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Sensing has been evaluated for distinction 
of species or group of weed species based on 
the assumption that each species has certain 
characteristics that can be used to differentiate it 
from another, which are usually leaf shape, size 
and reflectance. Several authors have shown that 
cultivated plants and crops can be discriminated 
by using their spectral signature (HUANG et al., 
2016; HERRMANN et al., 2013; SHAPIRA et al., 
2013).

For an efficient species distinction, it is 

necessary that the values of the reflectance of the 
targets do not match the reflectance of the other 
species. It can be seen in the graphs below the 
variation of the reflectance readings for the yellow 
(Figure 3) and the orange spectral bands (Figure 4). 
It is observed that the reflectance variation of the 
three species in the yellow and orange bands do not 
intersect values, therefore, they are potential bands 
for differentiation of these species.

The reflectance of the yellow and orange 
spectral bands is influenced by the type of pigment, 

Table 2. Results of the mean comparison analysis for the average reflectance of the bands in the three 
species under study.

Band
Specie

Violet Bluel Green Yellow Orange Red Red Edge NIR

Black Oat 0.030 a* 0.045 a 0.081 a 0.091 a 0.088 a 0.084 a 0.280 a 0.452 ab

Ryegrass 0.011 b 0.015 b 0.038 b 0.036 c 0.029 c 0.021 b 0.183 b 0.331 b

Wheat 0.018 b 0.025 b 0.067 a 0.006 b 0.050 b 0.034 b 0.305 a 0.556 a
* Different letters in the same column represent significant statistical difference. Tukey 1%.

Figure 3. Variation of the reflectance of the targets in the yellow band. n= 27. 

Figure 4. Variation of the reflectance of the targets in the orange band. n= 27. 
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as well as the amount of the pigment in the leaves 
(SHAPIRA et al., 2013), which may vary from 
species to species as well as the development stage 
of the species.

Several studies using multispectral and 
hyperspectral sensors have been performed (PEÑA 
et al., 2013; TORRES-SÁNCHEZ et al., 2013; 
LÓPEZ-GRANADOS et al., 2016; PEÑA et al., 
2015; LÓPEZ-GRANADOS et al., 2016; PÉREZ-
ORTIZ et al., 2016) to improve weed control in 
agricultural systems.

Remarkably, extensive studies are needed to 
define spectral bands in order to compose bases 
for site-specific weed management, reducing 
production costs as well as reducing environmental 
impacts.

CONCLUSION

•	 • It can be concluded that the analysis of 
spectral curves of black oat, ryegrass and 
wheat plants allows their differentiation in the 
full bloom stage of the species.

•	 • Yellow and orange spectral bands have higher 
spectral differentiation efficiency of black oats, 
ryegrass and wheat.

•	 • Hyperspectral sensors are of paramount 
importance in defining wavelengths or spectral 
bands for the purpose of identifying distinct 
targets in agricultural systems.

•	 • Studies using hyperspectral data of weed and 
cropped plants provide important information 
for composing a bank of spectral signatures for 
weed control in a targeted manner.
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