Detection of Diatraea Saccharalis in images using convolutional neural networks

Autores

DOI:

https://doi.org/10.13083/reveng.v33i1.18733

Palavras-chave:

Computer Vision, YOLO, Insect detection, Diatraea saccharalis

Resumo

Agricultural pests are organisms capable of significantly impacting the yield and quality of cultivated crops. Traditionally, population control of insect pests has relied on methods such as trapping and subsequent analysis of captured individuals to implement specific control actions, such as the use of insecticides. However, advancements in Computer Vision and Deep Learning techniques offer promising ways for more efficient pest detection and management. This study aims to apply Convolutional Neural Networks (CNNs) to detect the insect pest Diatraea saccharalis, a major pest of sugarcane crops. A dataset comprising 945 training images and 470 test images of deceased insects collected from traps was compiled in order to train and test the model. The Yolov8 Computer Vision framework was employed for software implementation. Results indicate promising outcomes, with the trained CNN achieving 96.2% precision and 95.8% recall. The application of Computer Vision in pest management could lead to more timely and accurate detection of pests, reducing the need for widespread insecticide use, enabling specific interventions, and minimizing labor-intensive monitoring tasks. This research highlights the potential of Deep Learning methodologies to enhance agricultural pest management strategies by improving early pest detection, reducing crop damage, and optimizing the use of pest control resources.

Downloads

Não há dados estatísticos.

Referências

ANITHA, G.; HARINI, P.; CHANDRU, V.; ABDULLAH, S.; RAHMAN, B. S. A. Pest Detection and Identification in Rice Crops using Yolo V3 Convolutional Neural Network. In: 2024 OPJU INTERNATIONAL TECHNOLOGY CONFERENCE (OTCON) ON SMART COMPUTING FOR INNOVATION AND ADVANCEMENT IN INDUSTRY 4.0. Proceedings [...]. IEEE, 2024, p. 1-5.

DE CESARO JR., T.; RIEDER, R. Automatic Identification of Insects from Digital Images: A Survey. Computers and Electronics in Agriculture, vol. 178, p. 105784, Nov. 2020. Available at: <http://www.sciencedirect.com/science/article/pii/S0168169920311224>. Accessed on: Oct 21, 2022.

DEMETRIO, P. A.; ZONETTI, P. C.; MUNHOZ, R. E. F. Evaluation of promising RB sugarcane clones regarding resistance to the Sugarcane Borer (Diatraea saccharalis) in the Northwest region of Paraná. Iniciação Científica CESUMAR, v. 10, n.01, p. 13-16, Jan./Jun. 2008.

DI DOMÊNICO, J. R.; LAU, D.; RIBEIRO, D. D.; RIEDER, R.; DE CESARO JÚNIOR, T. A. Comparative Study of Deep Convolutional Networks for Insect Detection in Images. In: Undergraduate Works Workshop - Conference on Graphics, Patterns and Images (Sibgrapi), 34, 2021, p. 183-188.

ELIAS, L. A. Maize Resistance to Stalk Diatraea saccharalis in Zeadiatraea Box and Diatraea Guilding (Lepidoptera: Pyralidae) at Five Localities in Mexico. 1970. 172 f. Thesis (Ph.D.) - Thesis, Kansas State University, Manhattan.

FAWZY, A.; ATEF M.; MOHAMED, A. Behavioral Analysis of Insects Pollination Effects: A Precision Agriculture Approach. In: 2024 INTELLIGENT METHODS, SYSTEMS, AND APPLICATIONS (IMSA), Giza, Egypt, 2024, Proceedings [...]. IEEE, 2024, pages 93-97.

GALLO, D.; NAKANO, O.; SILVEIRA NETO, S.; CARVALHO, R. P. L.; BAPTISTA, G. C.; BERTI FILHO, E.; PARRA, J. R. P.; ZUCCHI, R. A.; ALVES, S. B.; VENDRAMIN, J. D.; MARCHINI, L. C.; LOPES, J. R. S. E OMOTO, C. Entomologia Agrícola. FEALQ, Piracicaba, v. 10, p. 920., 2002.

GOOGLE COLAB. Available at: <https://colab.research.google.com>. Accessed on: Mar 19, 2024.

JOCHER, G.; CHAURASIA, A.; QIU J. Ultralytics Yolov8. Available at: <https://github.com/ultralytics/ultralytics>. Accessed on: Mar 14, 2024.

JUNQUEIRA, J. G. Deep Neural Networks for Automatic Detection and Counting of Whiteflies in Agricultural Context. Goiânia, 2021. 70p. Master’s Thesis. Institute of Informatics, Federal University of Goiás - Brazil.

KAMILARIS, A.; PRENAFETA-BOLDÚ, F.X. Deep Learning in Agriculture: A Survey. Computers and Electronics in Agriculture, vol.147, pp.70 – 90, 2018. Available at:<https://doi.org/10.1016/j.compag.2018.02.016>. Accessed on: Oct 16, 2023.

KOPPERT. Available at: <https://www.koppert.com.br/pherobox>. Accessed on: April 19, 2024.

ULTRALYCTS. Yolo Performance Metrics. Available at: <https://docs.ultralytics.com/guides/yolo-performance-metrics>. Accessed on: April 02, 2024.

LABELIMG. Available at: <https://github.com/tzutalin/labelImg>. Accessed on: April 19, 2024.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep Learning. Nature, vol. 521, n. 7553, pp. 436–444, 2015. Available at: <https://doi.org/10.1038/nature14539>. Accessed on: Oct 22, 2022.

PINTO, A.S.; RODRIGUES, L.R.; OLIVA, M.B. Use of Pheromone Traps for Sugarcane Diatraea saccharaliss, Diatraea Spp., in Sugarcane Fields. 2nd ed. Piracicaba: Editora Occasio, 2019. Available at: <https://occasio.com.br/site/wp-content/uploads/2020/03/Livro-armadilhas-feromonio- 2019.pdf>. Accessed on: Mar 14, 2024.

RAFIKOV, M.; ANGELELLI, T. Optimization of biological pest control of sugarcane borer. In: 2009 IEEE CONTROL APPLICATIONS, (CCA) & INTELLIGENT CONTROL, (ISIC). 2009, Proceedings [...]. p. 1254-1258. DOI: 10.1109/CCA.2009.5280989.

REDMON, J.; DIVVALA, S.; GIRSHICK, R.; FARHADI, A. You Only Look Once: Unified, Real-Time Object Detection. In: IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR). Proceedings [...]. IEEE, 2016, pages 779-788.

SANTO ANTÔNIO PLANT. Available at: <https://www.canaverde.com.br/usa-usina-santo-antonio>. Accessed on Mar 10, 2024.

SANTOS, F.; BORÉM, A.; CALDAS, C. Sugarcane: Agricultural Production, Bioenergy and Ethanol. 1. ed. London: Academic, 2015.

SOLAWETZ, J. Tackling the Small Object Problem in Object Detection. Aug 2020. Available at: <https://blog.roboflow.com/detect-small-objects>. Accessed on Nov 10, 2023.

VERMA, S.; TRIPATHI, S.; SINGH, A.; OJHA, M.; SAXENA, R. R. Insect Detection and Identification using YOLO Algorithms on Soybean Crop. In: IEEE REGION 10 CONFERENCE (TENCON), 2021, Proceedings [...]. IEEE, 2021, pages 272-277.

Downloads

Publicado

2025-05-06

Como Citar

Pantoni, R., & Dias, O. T. (2025). Detection of Diatraea Saccharalis in images using convolutional neural networks. Revista Engenharia Na Agricultura - REVENG, 33(Contínua), 32–44. https://doi.org/10.13083/reveng.v33i1.18733

Edição

Seção

Artigos