Tools, methods, and some caveats to analyze the Brazilian Judiciary Performance data.




Judiciary Performance, OLS, PLS-SEM, IPMA, Non-Linear


Objective: it discusses the judiciary´s performance antecedents in Brazil. It based its model on the work of Dimitrova-Grajzl, Grajzl, Sustersic, and Zajc (2012) about the Slovenian courts.

Design: performance, human capital, expenditures, investment in new technologies, and caseload is measured using OLS, PLS-SEM, IPMA, and quadratic regression using CNJ data.

Findings: The quantitative results show workforce profiles in details, the linear relationship, and the moderating effect of workload as not significant, while its quadratic effect enriches the discussion about productivity.

Originality: the results and the methodological path and data caveats are opportunities for future works to explain the ambiguities when performance is compared using Dimitrova-Grajzl´s and present work models.


Não há dados estatísticos.

Biografia do Autor


Doutor e mestre em Administração e Graduado em computação, todos pela UFES

Helio Zanquetto-Filho, UFES


Washington Romão Santos, UFES

Doutorando PPGADM UFES

Marcelo Moll Brandão, UGV/UFES



Antonakis, J., Bendahan, S., Jacquart, P., & Lalive, R. (2010). On making causal claims: A review and recommendations. The Leadership Quarterly, 21(6), 1086–1120.

Bettis, R., Gambardella, A., Helfat, C., & Mitchell, W. (2014). Quantitative empirical analysis in strategic management. Strategic Management Journal, 953(April), 949–953.

Capaldo, G., Costantino, N., Pellegrino, R., & Rippa, P. (2018). The Role of Risk in Improving Goal Setting in Performance Management Practices within Public Sector: An Explorative Research in Courts Offices in Italy. International Journal of Public Administration, 41(12), 986–997.

CNJ (2016). Justiça em Números 2016 (ano-base 2015). Retrieved November 27,2016, from.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Third). Mahwah, NJ: Lawrence Erlbaum Associates.

Dimitrova-Grajzl, V., Grajzl, P., Sustersic, J., & Zajc, K. (2012). Court output, judicial staffing, and the demand for court services: Evidence from Slovenian courts of first instance. International Review of Law and Economics, 32(1), 19–29.

Falavigna, G., Ippoliti, R., Manello, A., & Ramello, G. B. (2015). Judicial productivity, delay and efficiency: A Directional Distance Function (DDF) approach. European Journal of Operational Research, 240(2),592-601.

Fox, J. & Weisberg, S. (2011). An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage.URL:

Gomes, A. O., Alves, S. T., & Silva, J. T. (2018). Effects of investment in information and communication technologies on productivity of courts in Brazil. Government Information Quarterly, 35(3), 480-490.

_____, A. de O., & Guimarães, T. de A. (2013). Desempenho no Judiciário. Conceituação, estado da arte e agenda de pesquisa. Rev. Adm. Pública, 47(2), 379–401.

_____, A. O., Guimaraes, T. A., & Akutsu, L. (2017). Court Caseload Management: The Role of Judges and Administrative Assistants. RAC - Revista de Administração Contemporânea, 21(5), 648–665.

Guimaraes, T. A., Gomes, A. O., & Filho, E. R. G. (2018). Administration of justice: an emerging research field. RAUSP Management Journal, 53(3), 476–482.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Analise multivariada de dados. (Bookman, Ed.), Bookman (6th ed.). Porto Alegre: Bookman.

Hair, Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks: Sage.

Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The Extent and Consequences of P-Hacking in Science. PLOS Biology, (March), 1–16.

Jaccard, J., & Jacoby, J. (2010). Theory construction and model-buildind skills: a practical guide for social scientists. New York, NY: The Guilford Press. Retrieved from

Louro, A. C., Santos, W. R., & Zanquetto-Filho, H. (2017). Productivity antecedents of Brazilian courts of justice: Evidence from Justiça em números. BAR - Brazilian Administration Review, 14(4).

Mitsopoulos, M., & Pelagidis, T. (2007). Does staffing affect the time to dispose cases in Greek courts? International Review of Law and Economics, 27(2), 219–244.

Moosbrugger, H., Schermelleh-engel, K., Kelava, A., & Klein, A. G. (2009). 6. testing multiple nonlinear effects in structural equation modeling: a comparison of alternative estimation approaches. In T. Teo & M. S. Khine (Eds.), Structural equation modelling in educational research: Concepts and applications. Rotterdam, The Netherlands: Sense. (pp. 103–136).

Ng, G. Y. (2011). A discipline of judicial governance? Ultrecht Law Review, 7(1), 102–116.

Nogueira, J. M. M., Oliveira, K. M. M. de, Vasconcelos, A. P. de, & Oliveira, L. G. L. (2012). Estudo exploratório da eficiência dos Tribunais de Justiça estaduais brasileiros usando a Análise Envoltória de Dados (DEA). Rev. Adm. Pública, 46(5), 1317–1340.

Procopiuck, M. (2018). Information technology and time of judgment in specialized courts: What is the impact of changing from physical to electronic processing? Government Information Quarterly.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

Sadek, M. (2004). Poder Judiciário: perspectivas de reforma. Opinião Pública, X, 1–62. Retrieved from:

Teixeira, J. C., Bigotte, J. F., Repolho, H. M., & Antunes, A. P. (2018). Location of courts of justice: The making of the new judiciary map of Portugal. European Journal of Operational Research.




Como Citar

LOURO, A. C., Zanquetto-Filho, H., Santos, W. R., & Brandão, M. M. (2021). Tools, methods, and some caveats to analyze the Brazilian Judiciary Performance data. Administração Pública E Gestão Social, 13(1).