ON-FARM TRADE-OFFS FOR OPTIMAL AGRICULTURAL PRACTICES IN MATO GROSSO, BRAZIL

Authors

  • Marcelo Carauta Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), Universität Hohenheim http://orcid.org/0000-0003-3517-4628
  • Affonso Amaral Dalla Libera Department of Agronomy, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT) http://orcid.org/0000-0002-8400-9154
  • Anna Hampf Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research (ZALF) http://orcid.org/0000-0002-2405-7250
  • Rafael Felice Fan Chen Department of Animal Science, Universidade Federal do Paraná (UFPR)
  • José Maria Ferreira Jardim Silveira Institute of Economics, Universidade Estatual de Campinas (UNICAMP)
  • Thomas Berger Institute of Agricultural Sciences in the Tropics (490d), Hans-Ruthenberg-Institute, Universität Hohenheim http://orcid.org/0000-0003-3316-9614

DOI:

https://doi.org/10.25070/rea.v15i3.505

Abstract

To keep yield advances, farmers in Mato Grosso (MT) have been adopting several technological innovations. Therefore, agricultural production systems in MT have become complex and dynamic since farmers have to consider the increase of decision variables when planning and implementing their farming practices. These variables are widely spread across many distinct topics, bringing them together and summarizing information from diverse fields of research has become a difficult task in farmers’ decision-making process. Therefore, we performed an Integrated Assessment simulation experiment with a region-specific bio-economic component to assess trade-offs between different agricultural practices in a double cropping system. The simulation experiment was carried out with MPMAS, a multi-agent software package developed for simulating farm-based economic behavior and human-environment interactions in agriculture. Crop yields were simulated with the Model of Nitrogen and Carbon dynamics in Agro-ecosystems (MONICA). Our simulation results show a trade-off between lower soybean yields with the flexibility of double cropping when soybean with shorter maturity cycle is introduced. Results also captured regional differences in terms of land use share of different crops and farm configurations of double cropping. These results provide key insights into a farmer’s decision-making process depending on a multitude of decision variables.

Downloads

Download data is not yet available.

Author Biographies

Marcelo Carauta, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), Universität Hohenheim

PhD student in the Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), Universität Hohenheim

Affonso Amaral Dalla Libera, Department of Agronomy, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT)

Professor in the Department of Agronomy, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT)

Anna Hampf, Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research (ZALF)

PhD student at the Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin

Rafael Felice Fan Chen, Department of Animal Science, Universidade Federal do Paraná (UFPR)

PhD student in the Department of Animal Science, Universidade Federal do Paraná (UFPR)

José Maria Ferreira Jardim Silveira, Institute of Economics, Universidade Estatual de Campinas (UNICAMP)

Professor in the Institute of Economics, Universidade Estatual de Campinas (UNICAMP)

Thomas Berger, Institute of Agricultural Sciences in the Tropics (490d), Hans-Ruthenberg-Institute, Universität Hohenheim

Professor in the Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute) and Chair of Land Use Economics in the Tropics and Subtropics, Universität Hohenheim

References

ALI, Akhter; ABDULAI, Awudu. The Adoption of Genetically Modified Cotton and Poverty Reduction in Pakistan. Journal of Agricultural Economics, v. 61, n. 1, p. 175–192, 2010. http://dx.doi.org/10.1111/j.1477-9552.2009.00227.x.
ALLEN, Douglas W.; LUECK, Dean. The Nature of the Farm. The Journal of Law and Economics, v. 41, n. 2, p. 343–386, 1998. http://dx.doi.org/10.1086/467393.
ALVARENGA, Ramon Costa; CABEZAS, Waldo Alejandro Lara; CRUZ, José Carlos; SANTANA, Derli Prudente. Plantas de cobertura de solo para sistema plantio direto. Informe Agropecuário, v. 22, n. 208, p. 25–36, 2001. Disponível em: <http://ainfo.cnptia.embrapa.br/digital/bitstream/item/50687/1/Plantas-cobertura.pdf>. Acesso em: 26 ago. 2017.
ALVES, Lucilio Rogerio Aparecido; BARROS, GERALDO SANT ANA DE CAMARGO; RIBEIRO, Renato Garcia; OSAKI, Mauro; IKEDA, Victor Yoiti. Cultivo de milho geneticamente modificado no Brasil: estrutura de custos, rentabilidades e diferenciais com os sistemas convencionais – safra 2010/11. In: Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER) (Org.). 50º Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural: SOBER: Agricultura e desenvolvimento rural com sustentabilidade. 1. ed. 50º Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural: SOBER. Vitória, Brazil, 2012. ISBN 978-85-98571-08-9.
ARVOR, Damien; DUBREUIL, Vincent; RONCHAIL, Josyane; SIMÕES, Margareth; FUNATSU, Beatriz M. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). International Journal of Climatology, v. 34, n. 8, p. 2622–2633, 2014. http://dx.doi.org/10.1002/joc.3863.
BENNET, R.; ISMAEL, Y.; MORSE, S. Explaining contradictory evidence regarding impacts of genetically modified crops in developing countries. Varietal performance of transgenic cotton in India. The Journal of Agricultural Science, v. 143, n. 1, p. 35–41, 2005. http://dx.doi.org/10.1017/S002185960500506X.
BERGER, Thomas; SCHREINEMACHERS, Pepijn. Creating Agents and Landscapes for Multiagent Systems from Random Samples. Ecology and Society, v. 11, n. 2, 2006. Disponível em: <http://www.ecologyandsociety.org/vol11/iss2/art19/>. Acesso em: 21 mar. 2017.
CARAUTA, Marcelo; LATYNSKIY, Evgeny; MÖSSINGER, Johannes; GIL, Juliana; LIBERA, Affonso Amaral Dalla; HAMPF, Anna; MONTEIRO, Leonardo; SIEBOLD, Matthias; BERGER, Thomas. Can preferential credit programs speed up the adoption of low-carbon agricultural systems in Mato Grosso, Brazil? Results from bioeconomic microsimulation. Regional Environmental Change, v. 27, p. 675, 2017. http://dx.doi.org/10.1007/s10113-017-1104-x.
CÉLERES. Survey of environmental and social benefits of biotechnology adoption: Private Survey - unpublished raw data. Disponível em: <http://www.celeres.com.br/category/biotecnologia/>. Acesso em: 25 ago. 2017.
COHN, Avery S.; VANWEY, Leah K.; SPERA, Stephanie A.; MUSTARD, John F. Cropping frequency and area response to climate variability can exceed yield response. Nature Climate Change, v. 6, n. 6, p. 601–604, 2016. http://dx.doi.org/10.1038/nclimate2934.
CONAB – COMPANHIA NACIONAL DE ABASTECIMENTO. Custos de Produção Agrícola: A metodologia da Conab. Brasília, Brazil, 2010. 60 p. ISBN 978-85-62223-02-0. Disponível em: <http://www.conab.gov.br/conabweb/download/safra/custos.pdf>. Acesso em: 22 mar. 2017.
CONAB – COMPANHIA NACIONAL DE ABASTECIMENTO. Séries Históricas de Área Plantada, Produtividade e Produção, Relativas às Safras 1976/77 a 2015/16 de Grãos. Disponível em: <http://www.conab.gov.br/conteudos.php?a=1252>. Acesso em: 4 jan. 2017.
CRUZ, Thyane Viana da; PEIXOTO, Clovis Pereira; MARTINS, Mônica Cagnin. Crescimento e produtividade de soja em diferentes épocas de semeadura no oeste da Bahia. Scientia Agraria, v. 11, n. 1, p. 33, 2010. http://dx.doi.org/10.5380/rsa.v11i1.15941.
DOSI, Giovanni. Technological paradigms and technological trajectories. Research Policy, v. 11, n. 3, p. 147–162, 1982. http://dx.doi.org/10.1016/0048-7333(82)90016-6.
DUARTE, Jason de Oliveira; GARCIA, João Carlos; MATTOSO, Marcos Joaquim. Benefícios econômicos do uso da cultivar de milho híbrido BR 201. In: Empresa Brasileria de Pesquisa Agropecuária (EMBRAPA) (Org.). Documentos: Embrapa Milho e Sorgo, Sete Lagoas, Brazil: Embrapa Milho e Sorgo, 2006 54). ISBN 1518-4277. Disponível em: <http://ainfo.cnptia.embrapa.br/digital/bitstream/CNPMS/19650/1/Doc_54.pdf>. Acesso em: 25 ago. 2017, p. 13.
FAGIOLO, Giorgio; MONETA, Alessio; WINDRUM, Paul. A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems. Computational Economics, v. 30, n. 3, p. 195–226, 2007. http://dx.doi.org/10.1007/s10614-007-9104-4.
FAOSTAT – FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. FAOSTAT statistics database. Disponível em: <http://www.fao.org/faostat/en/#home>. Acesso em: 25 ago. 2017.
FERREIRA, Alexandre Cunha de Barcellos; BORIN, Ana Luiza Dias Coelho; BRITO, Giovani Greigh de; SILVA FILHO, João Luis da; BOGIANI, Julio Cesar. Sowing date, cultivars and plant density for second crop narrow row cotton. Pesquisa Agropecuária Tropical, v. 45, n. 4, p. 397–405, 2015. http://dx.doi.org/10.1590/1983-40632015v4536869.
FINGER, Robert; EL BENNI, Nadja; KAPHENGST, Timo; EVANS, Clive; HERBERT, Sophie; LEHMANN, Bernard; MORSE, Stephen; STUPAK, Nataliya. A Meta Analysis on Farm-Level Costs and Benefits of GM Crops. Sustainability, v. 3, n. 5, p. 743–762, 2011. http://dx.doi.org/10.3390/su3050743.
FRENKEN, Koen. A fitness landscape approach to technological complexity, modularity, and vertical disintegration. Structural Change and Economic Dynamics, v. 17, n. 3, p. 288–305, 2006. http://dx.doi.org/10.1016/j.strueco.2006.01.001.
GOUSE, Marnus; PRAY, Carl E.; KIRSTEN, Johann; SCHIMMELPFENNIG, David. A GM subsistence crop in Africa: The case of Bt white maize in South Africa. International Journal of Biotechnology, v. 7, 1/2/3, p. 84, 2005. http://dx.doi.org/10.1504/IJBT.2005.006447.
IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Brazilian Agricultural Census of 2006: Censo Agropecuário 2006: Tabela 837 - Número de estabelecimentos agropecuários e Área dos estabelecimentos por grupos de atividade econômica, condição produtor em relação às terras, tipo de prática agrícola e grupos de área total. Rio de Janeiro, Brazil: The Brazilian Institute of Geography and Statistics (IBGE), 2006. ISBN 0103-6157. Disponível em: <http://www.sidra.ibge.gov.br/bda/tabela/listabl.asp?z=t&c=837>. Acesso em: 22 mar. 2017.
IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Produção Agrícola Municipal: Tabela 1612: Área plantada, área colhida, quantidade produzida, rendimento médio e valor da produção das lavouras temporárias. Disponível em: <https://sidra.ibge.gov.br/Tabela/1612>. Acesso em: 25 ago. 2017.
IMEA – INSTITUTO MATO-GROSSENSE DE ECONOMIA AGROPECUÁRIA. Instituto Mato-grossense de Economia Agropecuária (Mato Grosso Institute of Agricultural Economics). Disponível em: <www.imea.com.br>. Acesso em: 4 jan. 2017.
IMEA – INSTITUTO MATO-GROSSENSE DE ECONOMIA AGROPECUÁRIA. Macroregion methodology report of Mato Grosso. Disponível em: <http://www.imea.com.br/upload/publicacoes/arquivos/justificativamapa.pdf>. Acesso em: 21 mar. 2017.
IMEA – INSTITUTO MATO-GROSSENSE DE ECONOMIA AGROPECUÁRIA. Production cost survey from the Mato Grosso Institute of Agricultural Economics (IMEA). Disponível em: <http://www.imea.com.br/imea-site/relatorios-mercado>. Acesso em: 22 mar. 2017.
INMET – INSTITUTO NACIONAL DE METEOROLOGIA. Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP). Disponível em: <http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>. Acesso em: 22 mar. 2017.
MONICA – THE MODEL FOR NITROGEN AND CARBON IN AGRO-ECOSYSTEMS. The Model for Nitrogen and Carbon in Agro-ecosystems. Disponível em: <http://monica.agrosystem-models.com/>. Acesso em: 25 ago. 2017.
NENDEL, C.; BERG, M.; KERSEBAUM, K. C.; MIRSCHEL, W.; SPECKA, X.; WEGEHENKEL, M.; WENKEL, K. O.; WIELAND, R. The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling, v. 222, n. 9, p. 1614–1625, 2011. http://dx.doi.org/10.1016/j.ecolmodel.2011.02.018.
ORIOLI JÚNIOR, Valdeci; COUTINHO NETO, André Mendes; COUTINHO, Edson Luiz Mendes; CARDOSO, Saulo Strazeio; FERNANDES, Carolina. Análise econômica da produção de milho em sistema semeadura direta em função de fontes e doses de nitrogênio. Nucleus, v. 8, n. 1, p. 421–429, 2011. http://dx.doi.org/10.3738/1982.2278.570.
PEDROTTI, Maira Cristina. Produtividade de soja e milho em função de épocas de semeadura sob irrigação e sequeiro. Dourados, Brazil, 2014. Disponível em: <http://files.ufgd.edu.br/arquivos/arquivos/78/MESTRADO-DOUTORADO-AGRONOMIA/Disserta%C3%A7%C3%A3o%20Maira%20Cristina%20Pedrotti.pdf>. Acesso em: 25 ago. 2017.
PIRES, Gabrielle F.; ABRAHÃO, Gabriel M.; BRUMATTI, Livia M.; OLIVEIRA, Leydimere J.C.; COSTA, Marcos H.; LIDDICOAT, Spencer; KATO, Etsushi; LADLE, Richard J. Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agricultural and Forest Meteorology, 228-229, p. 286–298, 2016. http://dx.doi.org/10.1016/j.agrformet.2016.07.005.
PRAY, Carl E.; HUANG, Jikun; HU, Ruifa; ROZELLE, Scott. Five years of Bt cotton in China – the benefits continue. The Plant Journal, v. 31, n. 4, p. 423–430, 2002. http://dx.doi.org/10.1046/j.1365-313X.2002.01401.x.
QAIM, Matin; TRAXLER, Greg. Roundup Ready soybeans in Argentina: Farm level and aggregate welfare effects. Agricultural Economics, v. 32, n. 1, p. 73–86, 2005. http://dx.doi.org/10.1111/j.0169-5150.2005.00006.x.
QAIM, Matin; ZILBERMAN, David. Yield effects of genetically modified crops in developing countries. Science, v. 299, n. 5608, p. 900–902, 2003. http://dx.doi.org/10.1126/science.1080609.
QUANG, Dang Viet; SCHREINEMACHERS, Pepijn; BERGER, Thomas. Ex-ante assessment of soil conservation methods in the uplands of Vietnam: An agent-based modeling approach. Agricultural Systems, v. 123, p. 108–119, 2014. http://dx.doi.org/10.1016/j.agsy.2013.10.002.
ROGERS, Everett M. Diffusion of innovations. 5. ed. New York, N.Y.: Simon & Schuster, 2003. ISBN 0743222091.
SCHREINEMACHERS, Pepijn; BERGER, Thomas. An agent-based simulation model of human–environment interactions in agricultural systems. Environmental Modelling & Software, v. 26, n. 7, p. 845–859, 2011. http://dx.doi.org/10.1016/j.envsoft.2011.02.004.
SCHREINEMACHERS, Pepijn; POTCHANASIN, Chakrit; BERGER, Thomas; ROYGRONG, Sithidech. Agent?based modeling for ex ante assessment of tree crop innovations: Litchis in northern Thailand. Agricultural Economics, v. 41, n. 6, p. 519–536, 2010. http://dx.doi.org/10.1111/j.1574-0862.2010.00467.x.
SEIXAS, Renato; SILVEIRA, José Maria. More of Less isn’t Less of More: Assessing Environmental Impacts of Genetically Modified Seeds in Brazilian Agriculture. In: Agricultural and Applied Economics Association (AAEA) (Org.). AAEA 2014 Annual Meeting. Agricultural and Applied Economics Association Annual Meeting. Minneapolis, USA. 27/07/2014, Minneapolis, USA, 2014. Disponível em: <http://purl.umn.edu/170226>. Acesso em: 25 ago. 2017, p. 41.
SEPLAN – SECRETARIA DE ESTADO DE PLANEJAMENTO DE MATO GROSSO. Zoneamento Sócio-econômico e ecológico: Mapa de solos do estado de Mato Grosso. Disponível em: <http://www.dados.mt.gov.br/publicacoes/dsee/geologia/rt/DSEE-GL-RT-004-A001.pdf>. Acesso em: 25 ago. 2017.
SILVERBERG, Gerald; DOSI, Giovanni; ORSENIGO, Luigi. Innovation, Diversity and Diffusion: A Self-Organisation Model. The Economic Journal, v. 98, n. 393, p. 1032, 1988. http://dx.doi.org/10.2307/2233718.
SPERA, Stephanie A.; COHN, Avery S.; VANWEY, Leah K.; MUSTARD, Jack F.; RUDORFF, Bernardo F.; RISSO, Joel; ADAMI, Marcos. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environmental Research Letters, v. 9, n. 6, p. 64010, 2014. http://dx.doi.org/10.1088/1748-9326/9/6/064010.
TEIXEIRA, Itamar Rosa; KIKUTI, Hamilton; BORÉM, Aluízio. Crescimento e produtividade de algodoeiro submetido a cloreto de mepiquat e doses de nitrogênio. Bragantia, v. 67, n. 4, p. 891–897, 2008. http://dx.doi.org/10.1590/S0006-87052008000400011.
THIRTLE, Colin; BEYERS, Lindie; ISMAEL, Yousouf; PIESSE, Jenifer. Can GM-Technologies Help the Poor?: The Impact of Bt Cotton in Makhathini Flats, KwaZulu-Natal. World Development, v. 31, n. 4, p. 717–732, 2003. http://dx.doi.org/10.1016/S0305-750X(03)00004-4.
TROOST, Christian; WALTER, Teresa; BERGER, Thomas. Climate, energy and environmental policies in agriculture: Simulating likely farmer responses in Southwest Germany. Land Use Policy, v. 46, p. 50–64, 2015. http://dx.doi.org/10.1016/j.landusepol.2015.01.028.
VALOIS, Afonso Celso Candeira. Importância dos transgênicos para a agricultura. Cadernos de Ciência & Tecnologia, v. 18, n. 1, p. 27–53, 2001. Disponível em: <https://seer.sct.embrapa.br/index.php/cct/article/download/8831/4963>.
VAN ITTERSUM, Martin K.; EWERT, Frank; HECKELEI, Thomas; WERY, Jacques; ALKAN OLSSON, Johanna; ANDERSEN, Erling; BEZLEPKINA, Irina; BROUWER, Floor; DONATELLI, Marcello; FLICHMAN, Guillermo; OLSSON, Lennart; RIZZOLI, Andrea E.; VAN DER WAL, Tamme; WIEN, Jan Erik; WOLF, Joost. Integrated assessment of agricultural systems – A component-based framework for the European Union (SEAMLESS). Agricultural Systems, v. 96, 1-3, p. 150–165, 2008. http://dx.doi.org/10.1016/j.agsy.2007.07.009.
VIEIRA FILHO, José Eustáquio Ribeiro; SILVEIRA, José Maria Ferreira da. Modelo Evolucionário de Aprendizado Agrícola. Revista Brasileira de Inovação, v. 10, n. 2, p. 265, 2011. http://dx.doi.org/10.20396/rbi.v10i2.8649017.

Published

2017-12-11

How to Cite

Carauta, M., Libera, A. A. D., Hampf, A., Chen, R. F. F., Silveira, J. M. F. J., & Berger, T. (2017). ON-FARM TRADE-OFFS FOR OPTIMAL AGRICULTURAL PRACTICES IN MATO GROSSO, BRAZIL. Revista De Economia E Agronegócio, 15(3). https://doi.org/10.25070/rea.v15i3.505

Issue

Section

Artigos