EXERCÍCIO FÍSICO ALTERA A MORFOLOGIA DE CARDIOMIÓCITOS EM CAMUNDONGOS KNOCKOUT PARA OS RECEPTORES ?2-ADRENÉRGICOS

Autores

  • Aurora Corrêa Rodrigues Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
  • Antônio José Natali Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
  • Daise Nunes Queiroz da Cunha Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
  • Alexandre Jayme Lopes Dantas Costa Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
  • Anselmo Gomes de Moura Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
  • Miguel Araujo Carneiro-Júnior Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
  • Leonardo Bonato Felix Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, MG, Brasil
  • Patrícia Chakur Brum Escola de Educação Física e Esporte, Universidade de São Paulo, SP, Brasil. Estudo financiado pela FAPEMIG (APQ-01449-13; BPD-00118-14).
  • Thales Nicolau Prímola- Gomes Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil

Palavras-chave:

atividade física, coração, hipertrofia

Resumo

O objetivo do presente estudo foi investigar os efeitos do treinamento físico sobre as propriedades morfológicas de miócitos do ventrículo esquerdo (VE) de camundongos knockout (KO) para receptores ?2-adrenérgicos. Camundongos FVB/N e KO para os receptores ?2-adrenérgicos com 4 meses de idade foram inicialmente separados aleatoriamente em quatro grupos: FVBc, FVBt, KO ?2c e KO ?2t. Os animais dos grupos treinados (FVBt e KO ?2t) foram submetidos a um protocolo de treinamento aeróbico de 8 semanas, 5 dias/semana, 1 hora/dia, com intensidade de 60% da velocidade máxima de corrida. Após a eutanásia, os cardiomiócitos do VE foram isolados por dispersão enzimática. O comprimento e a largura dos cardiomiócitos foram medidos utilizando-se um sistema de captação de imagens, e o volume celular foi calculado. Os resultados mostraram que os camundongos KO ?2t apresentaram maior comprimento celular, comparado ao grupo KO ?2c. Conclui-se que o protocolo de treinamento aeróbico aumenta o comprimento dos miócitos do VE de camundongos KO para os ?2-ARs. Esse tipo de alteração é compatível com a hipertrofia cardíaca do tipo excêntrica.

Downloads

Não há dados estatísticos.

Referências

ATCHLEY, A. E., JR.; DOUGLAS, P. S. Left ventricular hypertrophy in athletes: morphologic features and clinical correlates. Cardiol. Clin., v. 25, n. 3, p. 371-82, 2007.

ATGIE, C.; D'ALLAIRE, F.; BUKOWIECKI, L. J. Role of beta1- and beta3-adrenoceptors in the regulation of lipolysis and thermogenesis in rat brown adipocytes. Am. J. Physiol., v. 273, n. 4 Pt 1, p. C1136-42, 1997.

BARRESE, V.; TAGLIALATELA, M. New advances in beta-blocker therapy in heart failure. Front Physiol., v. 4, p. 323, 2013.

BERNSTEIN, D. Exercise assessment of transgenic models of human cardiovascular disease. Physiol. Genomics, v. 13, n. 3, p. 217-26, 2003.

BERNSTEIN, D. et al. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. American Journal of Physiology. Heart and Circulatory Physiology, v. 289, n. 6, p. H2441-9, 2005.

BERS, D. M. Cardiac excitation-contraction coupling. Nature, v. 415, n. 6868, p. 198-205, 2002.

BRISTOW, M. R. et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation Research, v. 59, n. 3, p. 297-309, 1986.

BRUM, P. C. et al. Neurohumoral activation in heart failure: the role of adrenergic receptors. An. Acad. Bras. Ciênc, v. 78, n. 3, 2006.

BUENO, C. R., JR. et al. Aerobic exercise training improves skeletal muscle function and Ca2+ handling-related protein expression in sympathetic hyperactivity-induced heart failure. J. Appl. Physiol. (1985), v. 109, n. 3, p. 702-9, 2010.

CANNAVO, A. et al. beta1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (S1PR1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of S1PR1 cardiac gene therapy. Circulation, v. 128, n. 15, p. 1612-22, 2013.

CHESLEY, A. et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. Circ. Res., v. 87, n. 12, p. 1172-9, 2000.

CHRUSCINSKI, A. J. et al. Targeted disruption of the beta2 adrenergic receptor gene. J. Biol. Chem., v. 274, n. 24, p. 16694-700, 1999.

COMMUNAL, C. et al. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. Circulation, v. 100, n. 22, p. 2210-2, 1999.

DEVIC, E. et al. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Molecular Pharmacology, v. 60, n. 3, p. 577-83, 2001.

ELLISON, G. M. et al. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart, v. 98, n. 1, p. 5-10, 2012.

FERRARA, N. et al. beta-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol., v. 4, p. 396, 2014.

FERREIRA, J. C. et al. Maximal lactate steady state in running mice: effect of exercise training. Clin. Exp. Pharmacol. Physiol., v. 34, n. 8, p. 760-5, 2007.

FOERSTER, K. et al. Cardioprotection specific for the G protein Gi2 in chronic adrenergic signaling through beta 2-adrenoceptors. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 24, p. 14475-80, 2003.

FUJIO, Y. et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation, v. 101, n. 6, p. 660-7, 2000.

FUJITA, T.; ISHIKAWA, Y. Apoptosis in heart failure. The role of the beta-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes. Circ. J., v. 75, n. 8, p. 1811-8, 2011.

HEIN, L.; KOBILKA, B. K. Adrenergic receptors from molecular structure to in vivo function. Trends Cardiovasc. Med., v. 7, n. 5, p. 137-45, 1997.

KATZ, A. M. Heart failure: a hemodynamic disorder complicated by maladaptive proliferative responses. J. Cell Mol. Med., v. 7, n. 1, p. 1-10, 2003.


MANN, D. L. Basic mechanisms of disease progression in the failing heart: the role of excessive adrenergic drive. Prog. Cardiovasc. Dis., v. 41, n. 1, Suppl 1, p. 1-8, 1998.

MOORE, R. L.; KORZICK, D. H. Cellular adaptations of the myocardium to chronic exercise. Prog. Cardiovasc. Dis., v. 37, n. 6, p. 371-96, 1995.

NAGA PRASAD, S. V.; NIENABER, J.; ROCKMAN, H. A. Beta-adrenergic axis and heart disease. Trends Genet., v. 17, n. 10, p. S44-9, 2001.

O'CONNELL, T. D. et al. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol. Rev., v. 66, n. 1, p. 308-33, 2014.

OLIVEIRA, R. S. et al. Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. J. Physiol., v. 587, n. Pt 15, p. 3899-910, 2009.

POWERS, S. K. et al. Exercise and cardioprotection. Curr. Opin. Cardiol., v. 17, n. 5, p. 495-502, 2002.

ROLIM, N. P. et al. Exercise training improves the net balance of cardiac Ca2+ handling protein expression in heart failure. Physiol. Genomics, v. 29, n. 3, p. 246-52, 2007.

ROMAN-CAMPOS, D.; CARNEIRO-JUNIOR, M. A.; PRIMOLA-GOMES, T. N.; SILVA, K. A.; QUINTAO-JUNIOR, J. F.; GONDIM, A. N. et al. Chronic exercise partially restores the transmural heterogeneity of action potential duration in left ventricular myocytes of spontaneous hypertensive rats. Clin. Exp. Pharmacol. Physiol., v. 39, p. 155–7, 2012.

SATOH, H., L. M. et al. Surface: volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys. J., v.70, n.3, p. 1494-504, 1996.

SNOEK, J. A. et al. Effect of aerobic training on heart rate recovery in patients with established heart disease; a systematic review. PLoS One, v. 8, n. 12, p. e83907, 2013.

SOLOVEVA, V. et al. Transgenic mice overexpressing the beta 1-adrenergic receptor in adipose tissue are resistant to obesity. Mol. Endocrinol., v. 11, n. 1, p. 27-38, 1997.

VANZELLI, A. S. et al. Integrative effect of carvedilol and aerobic exercise training therapies on improving cardiac contractility and remodeling in heart failure mice. PLoS One, v. 8, n. 5, p. e62452, 2013.

WISLOFF, U. et al. Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc. Res., v. 50, n. 3, p. 495-508, 2001.

XIANG, Y.; KOBILKA, B. K. Myocyte adrenoceptor signaling pathways. Science, v. 300, n. 5625, p. 1530-2, 2003.

XIANG, Y. et al. Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem., v. 277, n. 37, p. 34280-6, 2002.

XIAO, R. P. et al. Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ. Res., v. 85, n. 11, p. 1092-100, 1999.

ZHU, W. Z. et al. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl. Acad. Sci. USA, v. 98, n. 4, p. 1607-12, 2001.

Downloads

Publicado

2016-10-30

Como Citar

Rodrigues, A. C. ., Natali, A. J. ., Cunha, D. N. Q. da ., Costa, A. J. L. D. ., Moura, A. G. de ., Carneiro-Júnior, M. A. ., Felix, L. B. ., Brum, P. C. ., & Gomes, T. N. P.-. (2016). EXERCÍCIO FÍSICO ALTERA A MORFOLOGIA DE CARDIOMIÓCITOS EM CAMUNDONGOS KNOCKOUT PARA OS RECEPTORES ?2-ADRENÉRGICOS. Revista Mineira De Educação Física, 24(3), 81–93. Recuperado de https://periodicos.ufv.br/revminef/article/view/9912