Reference crop evapotranspiration in distinct agricultural regions of Southern Brazil: a comparison of improved empirical models

Autores

DOI:

https://doi.org/10.13083/reveng.v29i1.12418

Palavras-chave:

FAO-56, Multi-climatic models, Soil-plant-atmosphere system water balance, Spatiotemporal models

Resumo

The FAO56 Penman-Monteith model is globally accepted for the accurate determination of reference evapotranspiration (ETo). However, a lack of appropriate data encouraged the improved model’s approach to estimate ETo. This study compared the performance of 10 empirical models of ETo estimation (Penman, Priestley & Taylor, Tanner & Pelton, Makkink, Jensen & Haise, Hargreaves & Samani, Camargo, Benevides & Lopes, Turc, and Linacre) contrasted with the FAO56 model in two regions in Southern Brazil. Data were collected from automatic stations of the Brazilian National Institute of Meteorology (INMET) from December 21, 2019, to February 28, 2021. The determination coefficient (R²), mean square error (nRMSE), mean bias error (MBE), Willmott index (d), and Pearson’s correlation coefficient (r), clustering, and Principal Component Analysis (PCA) were performed. For the different regions, the radiation-based model proposed by Penman was the best alternative for estimating ETo. The model showed the most appropriated values for R2 (0.9015) and r (0.9494). The clustering and PCA analyses indicated the interrelations of the meteorological data and the combination of the models according to the parameters used for the determination of ETo.

Downloads

Não há dados estatísticos.

Referências

AHMADIPOUR, A.; SHAIBANI, P.; MOSTAFAVI, S. A. Assessment of empirical methods for estimating potential evapotranspiration in Zabol Synoptic Station by REF-ET model. MedBiotech Journal, v. 3, n. 1, p. 1-4, 2019.

ALLEN, R.G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Crop evapotranspiration - guidelines for computing crop water requirements – FAO Irrigation and Drainage paper 56. Rome, 1998.

BRIXNER, G. F.; SCHÖFFEL, E. R.; TONIETTO, J. Determinação da evapotranspiração por diferentes métodos e sua aplicação no índice de seca na campanha gaúcha, Brasil. Revista Brasileira de Fruticultura, v. 36, n. 4, p. 780-793, 2014.

?ADRO, S.; ŽUROVEC, O.; ŽUROVEC, J.; UZUNOVI?, M. Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research, v. 5, n. 4, p. 309-324, 2017.

CELESTIN, S.; CHENG, W.; YU, T.; LI, R.; QI, F. Evaluation of 32 simple equations against the Penman–Monteith method to estimate the reference evapotranspiration in the Hexi Corridor, Northwest China. Water, v. 12, n. 10, 2020.

COSTA, T. S.; SANTOS, R. L.; NOGUEIRA, A. T.; SALES, R. A.; SANTOS, R. A. Comparison between estimation methods of reference evapotranspiration in Bom Jesus da Lapa, BA. Revista Engenharia na Agricultura, v. 28, p. 120-128, 2020.

DJAMAN, K.; SAITO, K.; FUTAKUCHI, K.; MOUKOUMBI, Y. D.; MANNEH, B.; N’DIAYE, M. M.; IRMAK, S.; MULLER, B.; SOW, A.; BALDE, A. B. Evaluation of sixteen reference evapotranspiration methods under Sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, v. 3, p. 139-159, 2015.

DONOHUE, R. J.; RODERICK, M. L.; MCVICAR, T. R. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, v. 386, n. 1-4, p. 186–197, 2010.

GOTARDO, J. T.; GOMES, B. M.; RODRIGUES, L. N. Comparison of methods for estimating reference evapotranspiration: An approach to the management of water resources within an experimental basin in the Brazilian Cerrado. Engenharia Agricola, v. 36, n. 6, p. 1016-1026, 2016.

KASSAMBARA, A.; MUNDT, F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.5, 2017.

LE, S.; JOSSE, J.; HUSSON, F. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, v. 25, n. 1, p.1-18, 2008.

LINACRE, E. T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agricultural Meteorology, v. 18, n. 6, p. 409-424, 1977.

LIU, W.; HAN, S.; ZHANG, B. Quantitative analysis of the impact of meteorological factors on reference evapotranspiration changes in Beijing, 1958-2017. Water, v. 12, n. 8, 2020.

MAECHLER, M.; HUBERT, M.; ROUSSEEUW, P.; STRUYF, A. Cluster: Cluster analysis basics and extensions. R package version 2.0.6, 2017.

MAKKINK, G. F. Ekzamento de la formulo de Penman. Netherlands Journal of Agricultural Science, v. 5, p. 290-305, 1957.

MERAZ-MALDONADO, N. FLORES-MAGDALENO, H. Maize evapotranspiration estimation using Penman-Monteith equation and modeling the bulk canopy resistance. Water, v. 11, n. 12, 2019.

MIRALLES, D. G.; GASH, D. J. H.; DOLMAN, A. J.; BRUTSAERT, W. On the use of the term “evapotranspiration”. Water Resources Research, v. 56, n. 11, 2020.

MUHAMMAD, M. K. I.; CHUNG, E.; SONG, Y. H.; ISMAIL, T.; SHAHID, S.; NASHWAN, M. S. Evaluation of empirical reference evapotranspiration models using compromise programming: a case study of Peninsular Malaysia. Sustainability, v. 11, n. 16, 2019.

OCHOA-SÁNCHEZ, A.; CÉLLERI, R.; SUCOZHANAY, A.; CARILLO-ROJAS, G.; CRESPO, P. Actual evapotranspiration in the high Andean grasslands: a comparison of measurement and estimation methods. Frontiers in Earth Science, v. 7, p. 1-16, 2019.

PENG, L.; LI, Y.; FENG, H. The best alternative for estimating reference crop evapotranspiration in different sub- regions of mainland China. Scientific Reports, v. 7, n. 1, p. 1-19, 2017.

PENMAN, H. L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London: Mathematical and Physical Science, v.193, p.120-145, 1948.

PILAU, F. G.; RIGHI, E. Z.; SOMAVILLA, L.; BATTISTI, R. Desempenho de métodos de estimativa da evapotranspiração de referência nas localidades de Frederico Westphalen e Palmeira das Missões, RS. Ciência Rural, v. 42, n. 2, p. 283-290, 2012.

PRIESTLEY, C. H. B.; TAYLOR, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, v. 100, n. 2, p. 81-92, 1972.

RAIZIEI, T.; PEREIRA, L. S. Estimation of ETo with Hargreaves & Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management, v. 121, p. 1-18, 2013.

RStudio®: integrated development for R Boston, MA: RStudio®, Inc. Retrieved on December 11, 2020, from https://www.rstudio.com.

R CORE TEAM®. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2019. Retrieved on December 11, 2020, from https://www.R-project. org/.

SABZIPARVAR, A.-A.; TABARI, H. Regional estimation of reference evapotranspiration in arid and semiarid regions. Journal of Irrigation and Drainage Engineering, v. 136, n. 10, p. 724-731, 2010.

SALAM, R.; LINH, N. T. T.; AL-ANSARI, N.; DEHGHANI, M.; PHAM, Q. B.; ISLAM, A. R. M. T. The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Scientific Reports, v. 10, n. 1, p. 1-21, 2020.

SILVA, G. H.; CUNHA, F. F.; SANTOS, J. É. O.; FERREIRA, L. B.; DIAS, S. H. B. Performance of different methods for reference evapotranspiration estimation in Jaíba, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, n. 2, p. 83-89, 2018.

SONG, X.; XIE, Z.; ZHOU, Y.; ZHOU, Y.; ZHU, K.; XIAO, W.; LU, F. Performance of 12 reference evapotranspiration estimation methods compared with the Penman–Monteith method and the potential influences in Northeast China. Meteorological Applications, v. 26, n. 1, p. 83-96, 2019.

SOUZA, A. F.; JUNIOR, J. H. C. Desempenho de métodos de estimativa da evapotranspiração de referência para região da Baixada Cuiabana, MT. Agrometeoros, v. 25, n. 2, p. 395-403, 2017.

TABARI, H.; TRAJKOVIC, S.; GRISMER, M. E. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, v. 31, n. 2, p. 107-117, 2013.

TRAJKOVIC, S.; KOLAKOVIC, S. Evaluation of reference evapotranspiration equations under humid conditions. Water Resources Management, v. 23, n. 14, p. 3057-3067, 2009.

TURC, L. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy, v. 12, p. 13-49, 1961.

VESCOVE, H. V.; TURCO, J. E. P. Comparação de três métodos de estimativa da evapotranspiração de referência para a região de Araraquara – SP. Engenharia Agrícola, v. 25, n. 3, p. 713-721, 2005.

VENANCIO, L. P.; ALEMAN, C. C.; EUGENIO, F. C.; SEDIYAMA, G. C.; MANTOVANI, E. C.; CUNHA, F. F. Penman-Monteith with missing data and Hargreaves-Samani for ETo estimation in Espírito Santo state, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 23, n. 3, p. 153-159, 2019.

WILLMOTT, C. J.; MATSUURA, K.; ROBESON, S. M. A refined index of model performance. International Journal of Climatology, v. 32, n. 13, p. 2088-2094, 2012.

WRIGHT, K. Coogram; calculates correlation of variables and displays the results graphically. R package version 4. 0. 5, 2018.

Downloads

Publicado

2021-12-17

Como Citar

Santos, M. S. N. dos ., Castro, I. A. de, Oro, C. E. D., Zabot, G. L., & Tres, M. V. (2021). Reference crop evapotranspiration in distinct agricultural regions of Southern Brazil: a comparison of improved empirical models. Revista Engenharia Na Agricultura - REVENG, 29(Contínua), 448–465. https://doi.org/10.13083/reveng.v29i1.12418

Edição

Seção

Meteorologia Agrícola

Artigos mais lidos pelo mesmo(s) autor(es)