Development of a low-cost electromechanical penetrometer to verify resistance to soil penetration




Cone index, Soil compaction, Arduino


Soil compaction is one of the great obstacles in modern agriculture. With the increase in size, weight and intensity of use of machines in crops in recent decades, the soil has suffered damage to its structure, compromising the productivity of vegetable crops. One of the ways to indirectly obtain the compaction state of the soil is through the resistance to penetration imposed by it on a standardized metal rod. Invariably, commercial equipment for this purpose is expensive. The objective of this study was to develop a low-cost system for evaluating the resistance to soil penetration, using a prototyping platform and specific sensors. The developed equipment, when compared with a calibrated standard equipment, presented a high correlation in the results of resistance to penetration in two soil conditions. The development cost of the proposed equipment was 800% lower than the average value of commercial equipment available on the market, so the measurements met the purpose of the project, showing the possibility of developing low-cost solutions through prototyping platforms, for the assessment of resistance to soil penetration.


Não há dados estatísticos.


ALAOUI, A. DISERENS, E. Mapping soil compaction. A review. Environmental science e health, v.5, p.60-66, 2018.

BRAZÃO E SILVA, S. Análise de solo para ciências agrárias. 2 ed., Universidade Federal Rural da Amazônia. Belém: EDUFRA, 2018.

BEUTLER, A. N.; CENTURION. J. F.; SILVA. A. P. Comparação de penetrômetros na avaliação da compactação de latossolos. Engenharia Agrícola. v. 27. n. 1. p. 146-151. 2007.

COLOMBI, T.; KELLER, T. Developing strategies to recover crop productivity after soil compaction - A plant eco-physiological perspective. Soil and Tillage Research, v.191, p.156-161, 2019.

ESTEBAN, D. A. A.; SOUZA Z. M.; TORMENA, C. A.; LOVERA, L. A.; LIMA, E. S.; OLIVEIRA, I. N.; RIBEIRO, N. P. Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil and Tillage Research, v.187, p.60-71, 2019.

HARGREAVES, P. R.; BAKER K.L.; GRACESON A.; BONNETT, S.; BALL B.C.; CLOY, J.M. Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years. European Journal of Agronomy, v.109, 2019.

HORN, R. Soil compaction and consequences of soil deformation on changes in soil functions. In Task force: soil matters – solutions under foot. GeoEcology Essays, v.1, p.28-32, 2015.

KELLER, T.; SANDIN, M.; COLOMBI, T.; HORN, R. OR, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, v.194, p.1-12, 2019.

LIMA, R. P.; DE LEÓN, M. J.; SILVA, A. R. Comparação entre dois penetrômetros na avaliação da resistência mecânica do solo à penetração, Rev. Ceres, v. 60, n.4, p. 577-581, 2013.

MARTINS, P. C. C.; DIAS JUNIOR. M. S.; AJAYI. A. E.; TAKAHASHI. E. N.; TASSINARI. D. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests. Ciência e Agrotecnologia. v.42. p.58-68. 2018.

MOLINA JR, W. F. Comportamento mecânico do solo em operações agrícolas. Escola superior de agricultura Luiz de Queiroz. Piracicaba: ESALQ/USP, 2017.

MORAES, M. T.; DEBIASI, H.; FRANCHINI, J. C.; MASTROBERTI, A. A.; LEVIEN, R. LEITNER, D.; SCHNEPF A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil and Tillage Research, v.200, p.1-14, 2020.

OLUBANJO, O. O.; YESSOUFOU, M. A. Effect of Soil Compaction on the Growth and Nutrient Uptake of Zea Mays L. Sustainable Agriculture Research, v.8, n.2, 2019.

PEIXOTO, D. S.; SILVA, B. M.; OLIVEIRA, G. C.; MOREIRA, S. G.; SILVA F.; CURI, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil and Tillage Research, v.94, p.1-12, 2019.

ROZENFELD, H.; FORCELLINI, F. A.; AMARAL, D. C.; TOLEDO, J. C.; SILVA, S. L.; ALLIPRANDINI, D. H.; SCALICE, R. K. G. Gestão de desenvolvimento de Produtos. Uma referência para melhoria do processo. São Paulo: Saraiva. 2015.

SINGH, K.; CHOUDHARY, O. P.; SINGH, H. P.; SINGH, A.; MISHRA, S. K. Sub-soiling improves productivity and economic returns of cotton-wheat cropping system. Soil and Tillage Research, v.189, p.131-139, 2019.

SANTOS, H.G.; JACOMINE. P. K. T.; ANJOS. L. H. C.; OLIVEIRA. V. A.; LUMBRERAS. J. F.; COELHO. M. R.; ALMEIDA. J. A.; ARAUJO FILHO. J. C.; OLIVEIRA. J. B.; CUNHA. T. J. F. Sistema Brasileiro de Classificação de Solos. 5 ed. Brasília: EMBRAPA 2018.

USDA. Soil Survey Staff, Keys to Soil Taxonomy. 12th edition. Washington: United States Department of Agriculture, 2014.

UNGUREANU, N.; VLADUT, V.; CUJBESCU, D. Soil compaction under the wheel of a sprayer. E3S web of conferences. v.112, n.03027, 2019.




Como Citar

Marques Filho, A. C., Rauen, L., & Lanças, K. P. (2021). Development of a low-cost electromechanical penetrometer to verify resistance to soil penetration. Revista Engenharia Na Agricultura - REVENG, 29(Contínua), 466–473.



Energia na Agricultura

Artigos mais lidos pelo mesmo(s) autor(es)