Moisture adsorption isotherms and drying kinetic of persian clover (Trifolium resupinatum l.) and arrowleaf clover (Trifolium vesiculosum) seeds




activation energy, adsorption isotherms, arrowleaf clover, persian clover, thin layer drying


The aim of this work was to obtain adsorption isotherms and to study the drying kinetics of persian clover (Trifolium resupinatum L.) and arrowleaf clover (Trifolium vesiculosum) seeds. The equilibrium moisture content and the moisture adsorption behavior were found by isotherms curves at 40, 45 and 50 ºC, and the Peleg model was the most suitable. The drying kinetics was determined by thin layer assays in an air parallel flow dryer at all three temperatures. In addition, the predominance of the falling drying rate period for the two species of seeds was observed, and the critical moisture content values were approximately of 0.20 and 0.25 gwater gdry matter-1 for persian clover and arrowleaf clover seeds, respectively. The effective diffusivity values were estimated in ranges of values of 3.61×10-11 – 6.81×10-11 m² s-1 for persian clover and 6.76×10-11 – 1.15×10-10 m²s-1 for arrowleaf clover seeds and the temperature effect was expressed by an Arrhenius relation. Thus, drying kinetics confirmed the greater difficulty in moisture removal from the arrowleaf clover seeds, compared to the persian clover seeds drying, in agreement with the results obtained through adsorption isotherms.


Não há dados estatísticos.


AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, ed. 16, Association of Official Analytical Chemists: Washington, 1995.

Abalone, R., Gastón, A., Cassinera, A., Lara, M. A. Thin layer drying of amaranth seeds. Biosystems Engineering, v. 93, n. 2, p. 179-188, 2006.

Baroni, A.F., Hubinger, M.D. Drying of onion: effects of pretreatment on moisture transport. Drying Technology, v. 16, n. 10, p. 2083-2094, 1998.

Bevilaqua, G. A. P.; Olanda, R. B. Sistema de produção de forragem e de sementes de trevo vesiculoso para a agricultura familiar. Pelotas, Boletim de Pesquisa e Desenvolvimento/Embrapa Clima Temperado, 2011.

Chen, C. Moisture sorption isotherms of pea seeds. Journal of Food Engineering, v. 58, n. 1, p. 45-51, 2003.

Clemente, G., Sanjuán, N., Cárcel, J.A., Mulet, A. Influence of temperature, air velocity, and ultrasound application on drying kinetics of grape seeds. Drying Technology, v. 32, n. 1, p. 68-76, 2014.

Coelho, R. W., Rodrigues, R. C., Reis, J. C. L. Rendimento de forragem e composição bromatológica de quatro leguminosas de estação fria. Pelotas. Comunicado Técnico/Embrapa Clima Temperado, 2002.

Cremasco, M.A. Operações unitárias em sistemas particulados e fluidomecânicos. São Paulo: Blucher, 2012.

Costa, L.M., Resende, O., Oliveira, D.E.C., Sousa, K.A. Isotermas e calor isostérico de sementes de Buchenavia capitata (Vahl) Eichler. Revista Ciencia Agronômica, v. 46, n. 3, p. 516-523, 2015.

Doulia, D., Tzia, K., Gekas, V. A knowledge base for the apparent mass diffusion coefficient (Deff) of foods. International Journal of Food Properties, v. 3, n. 1, p. 1-14, 2000.

Duc, L.A., Han, J.W., Keum, D.H. Thin layer drying characteristics of rapesed (Brassica napus L.). Journal of Stored Products Research, v. 47, n. 1, p. 32-38, 2011.

Geankoplis, C. J. Transport processes and unit operations. Prentice-Hall: Englewood Cliffs, 1993.

Hassini, L., Bettaieb, E., Desmorieux, H., Torres, S.S., Touil, A. Desorption isotherms and thermodynamic properties of prickly pear seeds. Industrial. Crops and Products, v. 67, p. 457-465, 2015.

Henderson, S.M., Pabis, S. Grain drying theory I: temperature effect on drying coefficient. Journal of Agricultural Engineering Research, v. 6, p. 169-174, 1961.

Kaya, A., Aydin, O., Demirtas, C., Akgün, M. An experimental study on the drying kinetics of quince. Desalination, v. 212, n. 1, p. 328-343, 2007.

Kiranouds, C.T., Tsami, E., Maroulis, Z.B., Marinos-Kouris, D. Drying kinetics of some fruits. Drying Technology, v. 15, n. 5, p. 1399-1418, 1997.

Lewis, W.K. The rate of drying of solid materials. The Journal of Industrial and Engineering Chemistry, v. 13, n. 5, p. 427-432, 1921.

Mocelin, B., Oliveira Jr., D.L., Chielle, D.P., Tanabe, E.H., Bertuol, D.A., Schwaab, M., Meili, L. Mathematical modeling of thin layer drying of Papaya seeds in a tunnel dryer using particle swarm optimization method. Particulate Science and Technology, v. 32, n. 2, p. 123-130, 2013.

Monte, M.L., Senna, J., Arrieche, L.S., Pinto, L.A.A. Moisture sorption isotherms of chitosan-glycerol films: Termodynamic properties and microstruture. Food Bioscience, v. 22, p. 170-177, 2018.

Moraes, M.A., Rosa, G. S., Pinto, L.A.A. Moisture sorption isotherms and thermodynamics properties of apple fuji and garlic. International Journal of Food Science and Technology, v. 43, n. 10, p. 1824-1831, 2008.

Mujumdar, A.S. Handbook of industrial drying. New York: CRC Press, 2014.

Page, G.E. Factors influencing the maximum rates o fair drying shelled corn in thin layers. Purdue University: West Lafayette, 1949.

Park, K.J., Bin, A., Brod, F.P.R. Obtenção das isotermas de sorção e modelagem matemática para a pêra Bartlett (Pyrus sp.) com e sem desidratação osmótica. Ciência e Tecnologia de Alimentos, v. 21, n. 1, p. 73-77, 2001.

Peçanha, R. Sistemas particulados: operações unitárias envolvendo partículas e fluidos. Rio de Janeiro: Elsevier, 2014.

Peleg, M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering, v. 16, p. 21-37, 1993.

Rao, M.A., Rizvi, S.S.H., Datta, A.K. Engineering properties of foods. New York: Marcel Dekker Inc., 2005.

Ramallo, L.A., Pokolenko, J.J., Balmaceda, G.Z., Schmalko, M.E. Moisture diffusivity, shrinkage, and apparent density variation during drying of leaves at high temperatures. International Journal of Food Properties, v. 4, n. 1, p. 163-170, 2001.

REIS, J. C. L. R. Origem e características de novos trevos adaptados ao Sul do Brasil. Pelotas. Documento/Embrapa Clima Temperado, 2007.

Roberts, J.S., Kidd, D.R., Zakour, O.P. Drying kinetics of grape seeds. Journal of Food Engineering, v. 89, n. 4, p. 460-465, 2008.

Tasirin, S.M., Puspasari, I., Lun, A.W., Chai, P.V., Lee, W.T. Drying of kaffir lime leaves in a fluidized bed dryer with inert particles: kinetics and quality determination. Industrial Crops and Products, v. 61, p. 193-201, 2014.

Thys, R.C.S., Noreña, C.P.Z., Marczak, L.D.F., Aires, A.G., Cladera-Olivera, F. Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal.of Food Engineering, v. 100, n. 3, p. 468-473, 2010.

Uddin, Z., Suppakul, P., Boosupthip, W. Effect of air temperature and velocity on moisture diffusivity in relation to physical and sensory quality of dried pumpkin seeds. Drying Technology, v. 34, n. 12, p. 1423-1433, 2016.

Wani, A.A., Sogi, D.S., Shivhare, U.S., Ahmed, I., Kaur, D. Moisture adsorption isotherms of watermelon seed and kernels. Drying Technology, v. 24, n. 1, p. 99-104, 2006.

Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O’Donnell, J., Rowe, C.M. Statistics for the evaluation of model performance. Journal of Geophysical Research, v. 90, n. 5, p. 8995-9005, 1985.

Zeymer, J.S., Corrêa, P.C., Oliveira, G.H.H., Baptestini, F.M., Freitas, R.C.P. Desorption isotherms of Lactuca sativa seeds. Revista Brasileira de Engenharia Agricola e Ambiental, v.21, n. 8, p. 568-572, 2017.

Zomorodian, A., Kavoosi, Z., Momenzadeh, L. Determination of EMC isotherms and appropriate mathematical models for canola. Food Bioproducts Processing, v. 89, n. 4, p. 407-413, 2011.




Como Citar

Soares, G. S. ., Tuchtenhagen, S. N. ., Pinto, L. A. de A., & Felipe, C. A. S. (2020). Moisture adsorption isotherms and drying kinetic of persian clover (Trifolium resupinatum l.) and arrowleaf clover (Trifolium vesiculosum) seeds. Revista Engenharia Na Agricultura - REVENG, 28(Contínua), 535–548.



Armazenamento e Processamento de Produtos Agrícolas