Effects of initial pressure and sample and air cylinder dimensions on determination of soil air permeability
DOI:
https://doi.org/10.13083/reveng.v33i1.18428Palavras-chave:
Aeration, Soil attributes, Soil porosityResumo
The intrinsic soil air permeability (Kair), defined as the capacity of soil pores to conduct air, is an important soil attribute, as it identifies changes in pore spaces. This study aimed to evaluate the influence of initial gauge pressure, permeameter air cylinder volume, and sample volume on the Kair measurement. Samples of an Oxisol were collected at a depth of 0–0.2 layer and stored in a pot. The experimental design was completely randomized in a 4x3x2 factorial scheme, characterized by four different initial gauge pressures (500, 1000, 1500, and 2000 Pa), three different permeameter cylinder volumes (0.008, 0.0124, and 0.031 m3), and two sample volumes (100 and 270 cm3). The assessment was performed under two soil density conditions in pots (1.334 and 1.421 Mg m?3). Kair showed no changes due to the different sample volumes, but a different behavior was observed for the two soil density conditions. Increasing the permeameter air cylinder volume promoted an increase in the Kair estimate. Kair was lower for the initial pressure evaluated with 2000 Pa.
Downloads
Referências
BALL, B. C.; SCHJONNING, P. Air permeability. In: DANE, J.H. & TOPP, C., eds. Methods of soil analysis. Physical methods. Madison, Soil Science Society of America. Part 4. p.1141-1158. 2002.
BERISSO, F.E.; P. SCHJONNING, M. LAMANDE, P. WEISSKOPF, M. STETTLER, AND T. KELLER. Effects of the stress field induced by a running tyre on the soil pore system. Soil Tillage Res, v. 131, p. 36-46, 2013.
BIRLE, E. MANCUSO, C.; JOMMI, C.; D’ONZA, F. Effect of Initial Water Content and Dry Density on the Pore Structure and the Soil-Water Retention Curve of Compacted Clay. Unsaturated Soils: Research and Applications. Springer, Berlin, 2012.
BLACKWELL, P.S.; RINGROSE-VOASE, A.J.; JAYAWARDANE, N.S.; OLSSON, K.A.; MCKENZIE, D.C. & MASON, W.K. The use of air-filled porosity and intrinsic permeability to air to characterize structure of macropore space and satured hydraulic conductivity of clay soils. Soil Sci., v. 41, p. 215- 228, 1990.
BORGES, V. P.; MELO FILHO, J. F.; REZENDE, J. O.; BRITO, A. S.; BRANDÃO, F. J. C. Qualidade física de um Latossolo coeso cultivado com ´tangor murcott´ com e sem subsolagem. Revista Agrotecnologia, v. 8, n. 2, p. 44-51, 2017.
BRAGA, F.V.A.; REICHERT, J.M.; MENTGES, M.I.; VOGELMANN, E.S.; PADRÓN, R.A.R. Propriedades mecânicas e permeabilidade ao ar em topossequência Argissolo-Gleissolo: variação no perfil e efeito de compressão. Rev. Bras. Ciênc. Solo. V. 39, p. 1025–1035. 2015.
BLAKE; G.R.; HARTGE, K.H.;. Bulk density. In: Klute, A. (Ed.). Methods of soil analysis. 2.ed. vol. pt. 1. American Society Agronomy, Soil Science Society of America, Madison. p. 363-375, 1986. (Agronomy Monography, 9).
CARVALHO, I C., BRITO, A., MATOS, K., JESUS, M. Actual and Relative Soil Air Permeability as Soil Physical Quality Index. Journal of Agricultural Science, v. 11, p. 1-11, 2019.
CAVALIERI, K.M.V.; SILVA, A.P.; TORMENA, C.A.; LEÃO, T.P.; DEXTER, A.R.; HÅKANSSON, I. Long-term effects of no-tillage on dynamic soil physical properties in a Rhodic Ferrasol in Paraná, Brazil. Soil Tillage Res., v. 103, n. 1, p. 158-164, 2009.
R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, Version R-4.4.0. Available in: <https://www.R-project.org/>. Access in: 25 de maio de 2024.
FAO. World Baseline for Soil Resources. Paris: UNESCO, 1994. 161p.
FERREIRA, E.B., CAVALCANTI, P.P. and NOGUEIRA, D.A. ExpDes.pt: Experimental Designs (Portuguese). R package version 1.2.1. 2021. Available in: <https://CRAN.Rproject.org/package=ExpDes.pt.>. Access in: 5 de abril de 2023.
FU, Y.; TIAN, Z.; AMOOZEGAR, A.; HEITMAN, J. Measuring dynamic changes of soil porosity during compaction. Soil and Tillage Research, v. 193, p.114–121, 2019.
GUEDES FILHO, O; BLANCO-CANQUI, H; DA SILVA. A.P. Least limiting water range of the soil seedbed for long-term tillage and cropping systems in the central Great Plains, USA. Geoderma, Amsterdam, v. 207-208, p. 99-110. 2013.
HONG, B.; LI, X.; AN, P. T.; WANG, L.; LI, L.; GUO, Z.; LIU, J.; LEI, H. Application of vacuum decay tester in measuring air permeability of loess in the Chinese Loess Plateau, northwest China, Human and Ecological Risk Assessment: An International Journal. 2020.
HUANG, M., RODGER, H., AND BARBOUR, S.L. An evaluation of air permeability measurements to characterize the saturated hydraulic conductivity of soil reclamation covers. Can. J. Soil Sci., v. 95, p. 15-26, 2015.
IVERSEN, B.V., P. SCHJØNNING, T.G. POULSEN, AND P. MOLDRUP. In: situ, on-site and laboratory measurements of soil air permeability: Boundary conditions and measurement scale. Soil Sci., v. 166, p. 97-106, 2001.
IVERSEN, B.V.; MOLDRUP, P.; SCHJONNING, P.; JACOBSEN, O.H. Field application of a portable air permeameter to characterize spatial variability in air and water permeability. Vadose Zone Journal, Madison, v. 2, p. 618-626, 2003.
JESUS, M.C.; BRITO, A.S.; SILVA, M.O.; TEIXEIRA, S.S.; CARVALHO, W.D. Permeabilidade ao ar e porosidade de solos na região semiárida. Engenharia na Agricultura, v.25, n.3, p. 230-239, 2017.
KIRKHAM, D. Field method for determination of air permeability of soil in its undisturbed state. Soil Science Society of America Proceedings, Flórida, v. 11, p.93-99, 1946.
KOESTEL, J. SoilJ: an ImageJ plugin for the semiautomatic processing of three-di-mensional X-ray images of soils. Vadose Zone J., v. 17, n. 1, 2018.
LI, H.; JIAO, J. J.; LUK, M. A falling-pressure method for measuring air permeability of asphalt in laboratory. J. Hydrol., v. 286, p. 69–77. 2004.
LU, S. G.; MALIK, Z.; CHEN, D. P.; WU, C. F. Porosity and pore size distribution of Ultisols and correlations to soil iron oxides. Catena, v. 123, p. 79-87, 2014.
MARTÍNEZ, I.; CHERVET, A.; WEISSKOPF, P.; STURNY, W.G.; REK, J.; KELLER, T. Two decades of no-till in the Oberacker long-term field experiment: Part II. Soil porosity and gas transport parameters. Soil Tillage Res, v. 163, p. 130-140, 2016.
MCQUEEN, D.; SHEPHERD, T. Physical changes and compaction sensitivity of a fine-textured, poorly drained soil (Typic Endoaquept) under varying durations of cropping, Manawatu Region, New Zealand. Soil Till. Res., v. 63, n. 3, p. 93-107, 2002.
MENDIBURU, F. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-7, 2023. <https://CRAN.R-project.org/package=agricolae>. Access in: 2 de fevereiro de 2024.
MOHAMMADI, M.H.; VANCLOOSTER, M. A simple device for field and laboratory measurements of soil air permeability. Soil Sci. Soc. Am. J, v. 83, p.58-63, 2019.
MOLDRUP, P.; POULSEN, T.G.; SCHJONNING, P.; OLESEN, T.; YAMAGUCHI, T.Gas permeability in undisturbed soils: Measurements and predictive models. Soil Science, Baltimore, v.163, p.180-189,1998.
REICHERT, J.M.; REINERT, D.J. & BRAIDA, J.A. Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ci. Amb., v. 27, p. 29-48, 2003.
SCHJØNNING, P.; LAMANDÉ, M.; BERISSO, F. E.; SIMOJOKI, A.; ALAKUKKU, L.; ANDREASEN, R. R. Gas Diffusion, Non-Darcy Air Permeability, and Computed Tomography Images of a Clay Subsoil Affected by Compaction. Soil Sci. Soc. Am. J., v. 77, n. 6, p. 1977-1990, 2013.
SCHJØNNING, P.; KOPPELGAARD, M. The Forchheimer Approach for Soil Air Permeability Measurement. Soil Sci. Soc. Am. J, v. 81, n. 5, p. 1045-1053, 2017.
SCHJONNING, P.; PULIDO-MONCADA, M.; MUNKHOLM, L. J.; IVERSEN, B. V. Ratio of Non-Darcian to Darcian Air Permeability as a Marker of Soil Pore Organization. Soil Sci. Soc. Am. J., v. 83, n. 4, p. 1024-1031, 2019.
SILVA, A. P.; LEÃO, T. P.; TORNEMA, C. A.; GONÇALVES, A. C. A. Determination of air permeability in undisturbed soil samples by the decreasing pressure method. Revista Brasileira de Ciência do Solo, Viçosa, v. 33, n. 6, p. 1535-1545, 2009.
SILVEIRA, L.R.; BRITO, A.S.; MOTA, J.C.A.; MORAES, S.O.; LIBARDI, P.L. Sistema de aquisição de dados para equipamento de medida da permeabilidade intrínseca do solo ao ar. Revista Brasileira de Ciência do Solo, Viçosa, v.35, p.429-436, 2011.
SIMOJOKI, A.; FAZEKAS-BECKER, O.; HORN, R. Macro- and microscale gaseous diffusion in a Stagnic Luvisol as affected by compaction and reduced tillage. Agric. Food Sci. 17:252-264. 2008.
TANG, A. M.; CUI, Y. J.; RICHARD, G.; DÉFOSSEZ, P. A study on the air permeability as affected by compression of three French soils. Geoderma, v. 162, n. 1-2, p. 171-81, 2011.
TYNER, J.S.; WRIGHT, W.C.; LEE, J.; CRENSHAW, A.D.A. Dynamic Air Permeameter for Coarse-Textured Soil Columns and cores. Vadose Zone Journal, Madison, v.4, n. 2, p.428-433, 2005.
VENABLES, W. N. & RIPLEY, B. D. Modern Applied Statistics with S. Fourth Edition. Springer, New York. 2002. ISBN 0-387-95457-0.
WANG, T., CHEN, X., TANG, A.M., CUI, Y.J., 2014. On the use of the similar media concept for scaling soil air permeability. Geoderma, v. 235-236, p. 154-162, 2014.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Engenharia na Agricultura - REVENG

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
O(s) autor(es) autoriza(m) a publicação do texto na da revista;
O(s) autor(es) garantem que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
É reservado aos editores o direito de proceder a ajustes textuais e de adequação às normas da publicação.
A partir da submissão, o autor estará cedendo integralmente seus direitos patrimoniais da obra à publicação, permanecendo detentor de seus direitos morais (autoria e identificação na obra) e de acordo com a Licença Creative Commons, CC BY-NC.