Computational tool for selection and ranking of pull-type forage harvesters
DOI:
https://doi.org/10.13083/reveng.v29i1.10573Keywords:
Agricultural machinery, Algorithm, Forage harvest, Comparison, Ranking, SelectionAbstract
The variety of forage harvester models available on Brazilian market demand practical tools for selecting and ranking these equipments. The present study aimed at the elaboration of an algorithm capable of providing simple and objective criteria that assist in the decision making. The communication channel of the companies was used to obtain technical specifications and price of the equipment, which were tabulated in spreadsheets. The instructions for the manipulation of the obtained data were elaborated in the software R, being calculated ranks for the following requirements considering simulated information about a farm: price (COT), productivity and price relation (PROD.COT), fuel consumption (CONS), operational comfort (CONF), versatility (VERS) and overall (GERAL). We obtained information from 45 models belonging to 8 companies. The best machine in the overall rank got similar rank in the COT, PROD.COT and CONS ranks and worst rank for CONF. The algorithm established allowed the selection and ranking of the forage harvesters analyzed, providing simple, objective and easily interpreted criteria for the use of the farmers and the technicians who assist them.
Downloads
References
ASAE - American Society of Agricultural Engineers. ASAE D497.4: agricultural machinery management data. 47th ed. St. Joseph: ASAE, 2000.
ANDERSON, N.L.M.; MACHADO, A.L.T.; FERREIRA, M.F.; REIS, A.V. Índices de Depreciação, Ergonomia, Segurança, Nível de ruído e Manutenção como Parâmetros de Avaliação em Tratores Agrícolas de quatro rodas. Revista de la Facultad de Agronomía (La Plata), v. 114, p. 95-100, 2015a.
ANDERSON, N.L.M.; MACHADO, A.L.T.; REIS, A.V.; GOMES, M.C.; FERREIRA, M.F. Desenvolvimento da metodologia multicritério como modelo na seleção de tratores de quatro rodas. Revista de la Facultad de Agronomía (La Plata), v. 114, p. 265-270, 2015b.
BECKER, G.S. Livestock Feed Costs: Concerns and Options. In: CRC Report for Congress. 2008.
BERNARDES, T.F.; RÊGO, A.C. Study on the practices of silage production and utilization on Brazilian dairy farms. Journal of Dairy Science, v.97, p.1852-1861, 2014.
BOLLER, W. Máquinas para a colheita e conservação de forragens. In: FONTANELI, R.S.; SANTOS, H.P.; FONTANELI, R.S. Forrageiras para integração lavoura-pecuária-floresta na região Sul-Brasileira. Brasília: Embrapa, 2012.
CASSALHO, M.; BERNARDY, R.; MASSOCO, D.; BALLESTRA, M.R.G.; FERREIRA, M.F. Seleção de pulverizadores de barra montados através de coeficiente tecnológico. In: X Congresso da Sociedade Brasileira de Sistemas de Produção (SBSP). Foz do Iguaçu, PR. Anais do X Congresso da Sociedade Brasileira de Sistemas e Produção 2014, 2014.
EL SHAL, A.M.; DIDAMONY, M.I. Performance of a maize chopping machine with an attached sharpener unit. Journal of Soil Science and Agriculture Engineering, v.9, n.12, p.793-798, 2018.
FERRARETTO, L.F.; SHAVER, R.D.; LUCK, B.D. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. Journal of Dairy Science, v.101, p.3937-3951, 2018.
FRANCETTO, T.R.; Dagios, R.F.; FERREIRA, M.F.; ALONÇO, A.S. Utilização do índice de adequação de semeadoras-adubadoras de precisão como ferramenta de comparação entre modelos. In: XLII Congresso Brasileiro de Engenharia Agrícola. Fortaleza, CE. Os desafios para o desenvolvimento rural sustentável, 2013
KABIR, S.N.; RYU, M-J.; CHUNG, S-O; KIM, Y-J.; CHOI, C-H.; HONG, S-J.; SUNG, J-H. Research trends for performance, safety, and comfort evaluation of agricultural tractors: a review. Journal of Biosystems Engineering, v.39, n.1, p.21-33, 2014.
MUCK, R.E. Factors influencing silage quality and their implications for management. Journal of Dairy Science, v.71, p.2992-3002, 1988.
NIETIEDT, G.H.; RIBAS, R.L.; SCHLOSSER, J.F.; FRANTZ, U.G.; CASALI, A.L.; UHRY, D. Distribuição dos comandos de operação em tratores agrícolas nacionais com até 55 kW de potência. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, n.6, p.690-695, 2012.
R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available at: https://www.R-project.org/. Access in: 3 dec. 2019.
SIMÕES, D.; SANTIN, L.G.; FENNER, P.T. Ergonomic characterization of three sugar cane harvester machinery models. African Journal of Agricultural Research, v.11, n.8, p.724-729, 2016.
WEIRICH NETO, P.H.; GARBUIO, P.W.; SOUZA, N.M.; DELALIBERA, H.C.; LEITÃO, K. Fragment size of corn silage according to the dry matter and forage harvester adjustments. Engenharia Agrícola, v.33, n.4, p.764-771, 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Engenharia na Agricultura - Reveng
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
The author(s) authorize(s) the publication of the text in the journal;
The author(s) ensure(s) that the contribution is original and unpublished and that it is not in the process of evaluation by another journal;
The journal is not responsible for the views, ideas and concepts presented in articles, and these are the sole responsibility of the author(s);
The publishers reserve the right to make textual adjustments and adapt texts to meet with publication standards.
From submission, the author is fully conceding the paper's patrimonial rights to the publication, but retaining the owner of its moral rights (authorship and paper's identification) according to Creative Commons Attribution-Noncommercial.