Environmental impacts assessment of maize, soybean, and wheat production in the Southwest of São Paulo state: alternative scenarios for the substitution of chemical fertilization

Authors

DOI:

https://doi.org/10.13083/reveng.v30i1.13864

Keywords:

Cereal production, Systemic view, Environmental impacts, Composted fertilizer

Abstract

Mineral fertilizers are highly impactful in the agricultural sector, and animal manure can be an alternative to mitigate its impacts. The goal of this research was to estimate the potential environmental impacts on the production of soybean, maize, and wheat at the Lagoa do Sino Farm School from the Federal University of Sao Carlos, contemplating the 2016/2017 cropping season and testing the replacement of 100%, 50%, and 30% of chemical fertilization by composted cow manure. Life Cycle Assessment (LCA) was the methodology used. The functional unit was one ton of each crop produced on farm. Impacts were also assessed for one hectare of production for each agricultural product investigated and the system boundary was a cradle-to-farm gate. Impacts were assessed using the CML 2000 world+ method for abiotic depletion, global warming, acidification, and eutrophication. Chemical fertilization was the main hotspot for all crops produced. Soybean showed a potential impact of 1489 MJ, 125 kg CO2 eq., 0.6 kg SO2 eq., and 0.4 kg PO4 eq.; the production of maize 1497 MJ, 197 kg CO2 eq., 1 kg SO2 eq., and 0.8 kg PO4 eq.; and the production of wheat 5863 MJ, 632 kg CO2 eq., 3.3 kg SO2 eq., and 2.4 kg PO4 eq. The 30% substitution scenario was the most efficient observed since there is an increase in fuel consumption if distribution of larger amounts of manure are needed. Enriching the manure and investing in fossil fuel substitution will improve the environmental profile of the crops produced under intensive systems in the Southwest state of Sao Paulo, Brazil.

Downloads

Download data is not yet available.

References

BALDINI, C.; GARDONI, D.; GUARINO, M.. A critical review of the recent evolution of Life Cycle Assessment applied to milk production. Journal of Cleaner Production, [S. l.], v. 140, p. 421–435, 2017. DOI: 10.1016/j.jclepro.2016.06.078. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0959652616307557.

BOONE, L.; VAN LINDEN, V.; DE MEESTER, S.; VANDECASTEELE, B.; MUYLLE, H.; ROLDÁN-RUIZ, I.; NEMECEK, T.; DEWULF, J. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of the Total Environment, [S. l.], v. 553, p. 551–564, 2016. DOI: 10.1016/j.scitotenv.2016.02.089. Disponível em: http://dx.doi.org/10.1016/j.scitotenv.2016.02.089.

BRITO, E. C. Produção intensiva de leite em compost barn: Uma avaliação técnica e econômica sobre a sua viabilidade. 2016. Universidade Federal de Juiz de Fora, [S. l.], 2016.

CHERUBINI, E.; FRANCO, D.; ZANGHELINI, G. M.; SOARES, S. R.. Uncertainty in LCA case study due to allocation approaches and life cycle impact assessment methods. The International Journal of Life Cycle Assessment, [S. l.], v. 23, n. 10, p. 2055–2070, 2018. DOI: 10.1007/s11367-017-1432-6. Available at: http://link.springer.com/10.1007/s11367-017-1432-6.

COÊLHO, J. D. Produção de grãos - feijão, milho e soja. Caderno Setorial ETENE, [S. l.], n. 33, 2018. Available at: http://www.bnb.gov.br/etene.

CONAB. Análise mensal: trigo fevereiro de 2018. 2018. Available at: https://www.conab.gov.br.

CRENNA, E.; SECCHI, M.; BENINI, L.; SALA, Serenella. Global environmental impacts: data sources and methodological choices for calculating normalization factors for LCA. The International Journal of Life Cycle Assessment, [S. l.], v. 24, n. 10, p. 1851–1877, 2019. DOI: 10.1007/s11367-019-01604-y. Available at: http://link.springer.com/10.1007/s11367-019-01604-y.

DAMASCENO, F. A. Compost bedded pack barns system and computational simulation of airflow through naturally ventilated reduced model. 2012. Universidade Federal de Viçosa, [S. l.], 2012.

DJOMO, S. N.; WITTERS, N.; VAN DAEL, M.; GABRIELLE, B.; CEULEMANS, R. Impact of feedstock , land use change , and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies. Applied Energy, [S. l.], v. 154, p. 122–130, 2015. DOI: 10.1016/j.apenergy.2015.04.097. Available at: http://dx.doi.org/10.1016/j.apenergy.2015.04.097.

DU, Y.; CUI, B.; ZHANG, Q.; WANG, Z.; SUN, J.; NIU, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. CATENA, [S. l.], v. 193, p. 104617, 2020. DOI: 10.1016/j.catena.2020.104617. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0341816220301673.

EMBRAPA. Solos brasileiros. 2022. Available at: https://www.embrapa.br/tema-solos-brasileiros/solos-do-brasil. Acesso em: 2 fev. 2022.

EPA. Climate Change Indicators: Global Greenhouse Gas Emissions. 2022. Available at: https://www.epa.gov/climate-indicators/climate-change-indicators-global-greenhouse-gas-emissions. Accessed on 2 fev. 2022.

FANTIN, V.; RIGHI, S.; RONDINI, I.; MASONI, P. Environmental assessment of wheat and maize production in an Italian farmers’ cooperative. Journal of Cleaner Production, [S. l.], v. 140, p. 631–643, 2017. DOI: 10.1016/j.jclepro.2016.06.136. Available at: https://linkinghub.elsevier.com/retrieve/pii/S095965261630823X.

FAO. Emissions total. 2019. Available at: https://www.fao.org/faostat/en/#data/GT. Accessed on 2 fev. 2022.

FAO. Crops and livestock products. 2021. Available at: https://www.fao.org/faostat/en/#data/QCL.

GHG PROTOCOL. GHG Protocol - Brazilian Program. 2020. Available at: https://eaesp.fgv.br/centros/centro-estudos-sustentabilidade/projetos/programa-brasileiro-ghg-protocol.

GIUSTI, G.; ALMEIDA, G. F.; APRESENTAÇÃO, M. J. F.; GALVÃO, L. S.; KNUDSEN, M. T.; DJOMO, S. N.; SILVA, D. A. L. Environmental impacts management of grain and sweet maize through life cycle assessment in São Paulo, Brazil. International Journal of Environmental Science and Technology, [s. l.], 2022. DOI: https://doi.org/10.1007/s13762-022-04418-y

GUIMARÃES, A. S. Sistema Compost Barn: caracterização dos parâmetros de qualidade do leite e mastite, reprodutivos, bem estar animal, do composto e econômicos em condições tropicais. 2018. Available at: https://www.embrapa.br/busca-de-projetos/-/projeto/209863/sistema-compost-barn-caracterizacao-dos-parametros-de-qualidade-do-leite-e-mastite-reprodutivos-bem-estar-animal-do-composto-e-economicos-em-condicoes-tropicais.

IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. ed. Japan: IGES, 2006.

ISO. ISO 14040: Environmental Management - Life Cycle Assessment - Principles and FrameworkSwitzerland, 2006a.

ISO. ISO 14044: Environmental Management – Life Cycle Assessment –Requirements and GuidelinesSwitzerland, 2006b.

JIANG, Z.; ZHENG, H.; XING, B. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of The Total Environment, [S. l.], v. 760, p. 143342, 2021. DOI: 10.1016/j.scitotenv.2020.143342. Available at: https://linkinghub.elsevier.com/retrieve/pii/S004896972036873X.

JONES, F. Os primeiros Inoculantes: Produtos feitos com bactérias que captam nitrogênio na lavoura de soja remontam aos anos 1960. Online, 2019. Available at: https://revistapesquisa.fapesp.br/os-primeiros-inoculantes/.

LI, S.; WU, J.; WANG, X.; MA, L. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. Journal of Cleaner Production, [S. l.], v. 271, p. 122683, 2020. DOI: 10.1016/j.jclepro.2020.122683. Available at: https://linkinghub.elsevier.com/retrieve/pii/S095965262032730X.

MATSUURA, M. I. S. F.; DIAS, F. R. T.; PICOLI, J. F.; LUCAS, K. R. G.; DE CASTRO, C.; HIRAKURI, M. H. Life-cycle assessment of the soybean-sunflower production system in the Brazilian Cerrado. The International Journal of Life Cycle Assessment, [S. l.], v. 22, n. 4, p. 492–501, 2017. DOI: 10.1007/s11367-016-1089-6. Available at: http://link.springer.com/10.1007/s11367-016-1089-6.

MENDES, N. C.; BUENO, C.; OMETTO, A. Avaliação de Impacto do Ciclo de Vida: revisão dos principais métodos. Production, [S. l.], v. 26, n. 1, p. 160–175, 2015. DOI: 10.1590/0103-6513.153213. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132016000100160&lng=pt&tlng=pt.

MÜLLER, G. T. Emprego da Pegada Hídrica e da Ánalise de Ciclo de Vida para a avaliação do uso da água na cadeia produtiva do biodiesel de soja. 2012. Universidade Federal do Rio Grande do Sul, [S. l.], 2012.

MUÑOZ, P.; ANTÓN, A.; NUÑEZ, M.; PARANJPE, A.; ARIÑO, J.; CASTELLS, X.; MONTERO, J. I.; RIERADEVALL, J. Comparing the envitonmental impacts of greenhouse versus open field tomato production in the mediterranean region. Acta Horticulturae, [S. l.], n. 801, p. 1591–1596, 2008. DOI: 10.17660/ActaHortic.2008.801.197. Available at: https://www.actahort.org/books/801/801_197.htm.

NEMECEK, T. Estimating direct field and farm emissions. 2013. Available at: https://www.ecoinvent.org/files/131021_nemecek_estimating_direct_field_and_farm_emissions.pdf. Accessed on 20 nov. 2017.

NOYA, I.; GONZÁLEZ-GARCÍA, S.; BACENETTI, Já.; ARROJA, L.; MOREIRA, M. T. Comparative life cycle assessment of three representative feed cereals production in the Po Valley (Italy). Journal of Cleaner Production, [S. l.], v. 99, p. 250–265, 2015. DOI: 10.1016/j.jclepro.2015.03.001.

PREDA, T. Environmental assessment of Danish beef by Life Cycle Assessment (LCA). 2015. Aarhus University, [S. l.], 2015.

RIBEIRO, A. C.; GUIMARÃES, P. T. G.; ALVAREZ, V. V. H. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5° aproximação. 1. ed. Viçosa: Comissão de Fertilidade do Solo do Estado de Minas Gerais, 1999.

ROMEIKO, X. X.; LEE, E. K.; SORUNMU, Y.; ZHANG, X. Spatially and Temporally Explicit Life Cycle Environmental Impacts of Soybean Production in the U.S. Midwest. Environmental Science & Technology, [S. l.], v. 54, n. 8, p. 4758–4768, 2020. DOI: 10.1021/acs.est.9b06874. Available at: https://pubs.acs.org/doi/10.1021/acs.est.9b06874.

SILVA, D. A. L.; NUNES, A. O.; PIEKARSKI, C. M.; DA SILVA MORIS, V. A.; DE SOUZA, L. S. M.; RODRIGUES, T. O. Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, [S. l.], v. 20, p. 304–315, 2019. DOI: 10.1016/j.spc.2019.07.005. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2352550919301733.

TAKI, M.; SOHEILI-FARD, F.; ROHANI, A.; CHEN, G.; YILDIZHAN, H. Life cycle assessment to compare the environmental impacts of different wheat production systems. Journal of Cleaner Production, [S. l.], v. 197, p. 195–207, 2018. DOI: 10.1016/j.jclepro.2018.06.173. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0959652618318237.

TSALIDIS, G. A. Human Health and Ecosystem Quality Benefits with Life Cycle Assessment Due to Fungicides Elimination in Agriculture. Sustainability, [S. l.], v. 14, n. 2, p. 846, 2022. DOI: 10.3390/su14020846. Available at: https://www.mdpi.com/2071-1050/14/2/846.

UNITED NATIONS (UN). Sector profile for agriculture in Brazil. 2021. Available at: http://scp-hat.lifecycleinitiative.org/sector-profiles/.

UNITED NATIONS (UN). COP26: Together for our planet. 2022. Available at: https://www.un.org/en/climatechange/cop26. Acesso em: 2 fev. 2022.

ZORTEA, R. B.; MACIEL, Vinícius Gonçalves; PASSUELLO, Ana. Sustainability assessment of soybean production in Southern Brazil: A life cycle approach. Sustainable Production and Consumption, [S. l.], v. 13, p. 102–112, 2018. DOI: 10.1016/j.spc.2017.11.002. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2352550917300532.

Downloads

Published

2022-10-11

How to Cite

Giusti, G., Saavedra, Y. M. B., & Almeida, G. F. de. (2022). Environmental impacts assessment of maize, soybean, and wheat production in the Southwest of São Paulo state: alternative scenarios for the substitution of chemical fertilization. Engineering in Agriculture, 30(Contínua), 328–346. https://doi.org/10.13083/reveng.v30i1.13864

Issue

Section

Water and environmental resources