Effect of reduced age at first calving and an increased weaning rate on CO2 equivalent emissions in a cow-calf system

Authors

DOI:

https://doi.org/10.13083/reveng.v30i1.14028

Keywords:

Sustainability, productivity, livestock

Abstract

The objective of this study was to evaluate the impact of using technology to reduce the age at first calving (AFC; from 48 to 24 months) and increase the weaning rate (WR; from 60% to 80%) in beef herds. The need for pasture area (hectares) and the CO2 equivalent emissions (CO2eq.) of animals present in the production system were analyzed. Data from a livestock breeding system were used to produce 400 male calves per year: System 1) using reproductive biotechnology (fixed-time artificial insemination [FTAI] and System 2) without the use of reproductive biotechnology (only natural mating). System 1, which used reproductive biotechnology (FTAI; composed of 1,540 AU of animals in 1,540 hectares), presented a lower AFC (24 months), a higher WR (80%), and lower CO2eq. emissions per year (2,311.3 tons). System 2, which did not employ reproductive technology (composed of 2,475 AU [450 kg of animals] on 2,475 hectares), had the highest AFC (48 months) and lowest WR (60%) and emitted 3,714.5 tons of CO2eq. per year. The reduction in CO2eq. emissions per year was 1,403.3 tons in the system that used reproductive biotechnology, corresponding to gains of US$ 135,920.42 (US$ 96.86 per ton of CO2eq.). It is estimated that the adoption of the FTAI increases the reproductive efficiency of a cow-calf operation system, which can produce the same number of male calves (400) on 935 fewer hectares of pasture (-37.3%) and with a reduction of 1,403.3 tons of CO2eq. produced per year.

Downloads

Download data is not yet available.

References

Associação Brasileira das Indústrias Exportadoras de Carnes (ABIEC). Sumário 2021. Available at: http://abiec.com.br/publicacoes/beef-report-2021/.pdf. Accessed: 1 Aug. 2021.

Baruselli, P.S. IATF gera ganhos que superam R$ 3,5 bilhões nas cadeias de produção de carne e de leite. Boletim Eletrônico do Departamento de Reprodução Animal – FMVZ/USP, 2ª Edição, 2019. Available at: http://vra.fmvz.usp.br/boletim-eletronico-vra/. Accessed: 21 Mar. 2019.

Baruselli P.S.; Ferreira R.M.; Colli M.H.A.; Elliff F.M.; Sá Filho M.F.; Vieira L.M.; Freitas B.G. Timed artificial insemination: current challenges and recent advances in reproductive efficiency in beef and dairy herds in Brazil. Animal Reproduction Science, v. 14, n. 3, p. 558-571, 2017.

Baruselli, P.S.; Ferreira, R.M.; Sá Filho, M.F.; Bó, G.A. Review: Using artificial insemination v. natural service in beef herds. Animal Reproduction Science, v. 12, p. 45-52, 2018.

Baruselli, P.S.; Abreu, L.A.; Catussi, B.L.C.; Santos, G.F.F.; Factor, L.; Felisbino, A.R.; Frigoni, F.G.; Crepaldi, G.A. Mitos e realidades sobre a inseminação artificial em tempo fixo (IATF) em bovinos de corte. Anais do XXIV Congresso Brasileiro de Reprodução Animal (CBRA-2021) e VIII International Symposium on Animal Biology of Reproduction. Joint Meeting, 2021.

Beauchemin, K.A.; Janzen, H.H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Mitigation of greenhouse gas emissions from beef production system in western Canada; evaluation using farm-based life cycle assessment. Animal Feed Science and Technology, v. 166, p. 663-677, 2011.

Becoña, G.; Astigarraga, L.; Picasso, V.D. Greenhouse Gas Emissions of Beef Cow-Calf Grazing Systems in Uruguay. Sustainable Agriculture Research, v. 3, n. 2, p. 89-105, 2014.

Bellarby, J.; Tirado, R.; Leip, A.; Weiss, F.; Lesschen, J.P.; Smith, P. Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology, v. 19, p. 3-18, 2013.

Beretta, V. Produtividade e eficiência biológica de sistemas pecuários criadores diferindo na idade das novilhas ao primeiro parto e na taxa de natalidade do rebanho de cria no Rio Grande de Sul. Revista Brasileira de Zootecnia, v. 30, p. 1278-1288, 2001.

Beretta, V. Produtividade e eficiência biológica de sistemas de recria e engorda de gado de corte no Rio Grande do Sul. Revista Brasileira de Zootecnia, v. 31, p. 696-706, 2002.

Braga, R.P. Os modelos de simulação e a investigação de sistemas da agricultura. Ordem Eng., v. 20, p. 48-54, 1997.

Bó, G.A.; Cutaia, L.; Peres, L.C.; Pincinato, D.; Marosa, D.; Baruselli, P.S. Technologies for fixed-time artificial insemination and their influence on reproductive performance of Bos indicus cattle. Society of Reproduction and Fertility, supplement 64, p. 223-236, 2007.

Buddle, B.M.; Denis, M.; Attwood, G.T.; Altermann, E.; Janssen, P.H.; Ronimus, R.S.; Pinares-Patino, C.S.; Muetzel, S.; Wedlock, D. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. The Veterinary Journal, v. 188, p. 11-17, 2011.

Cullen, B.R.; Eckard, R.J.; Timms, M.; Phelps, D. G. The effect of earlier mating and improving fertility on greenhouse gas emissions intensity of beef production in northern Australian herds. The Rangeland Journal, v. 38, n. 3, p. 283-290, 2016.

Eckard, R.J.; Grainger, C.; De Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science, v. 130, p. 47-56, 2010.

European Commission, EU Emissions Trading System (EU ETS), available at: https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets_en#ecl-inpage-689. Acessed: 24 Jan. 2022.

Fialho, F.B. Sistemas de apoio à decisão na produção de suínos e aves. In: Reunião Anual da Sociedade Brasileira de Zootecnia, 36., 1999, Porto Alegre. Anais...Porto Alegre: SBZ, p. 307-317, 1999.

Figueiredo, E.B.; Jayasundara, S.; Bordonal, R.O.; Berchielli, T.T.; Reis, R.A.; Wagner-Riddle, C.; Scala Jr, N. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, v. 142, p. 420-431, 2017.

Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.

Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A. T.; Yang, W.Z.; Tricarico, J.M.; Kebreab, E.; Waghorn, G.; Dijkstra, J.; Oosting, S. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, v. 7, p. 220-234, 2013.

Gill, M.; Smith, P.; Wilkinson, J.M. Mitigating climate change: the role of domestic livestock. Animal, v. 4, p. 323-333, 2010.

Hristov, A.N.; Ott, T.; Tricarico, J.; Rotz, A.; Waghorn, G.; Adesogan, A.; Dijkstra, J.; Montes, F.R.; Oh, J.; Kebreab, E.; Oosting, S.J.; Gerber, P.J.; Henderson, B.; Makkar, H.P.; Firkins, J.L. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science, v. 91, p. 5095-5113, 2013.

Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Review: current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Animal, v. 11, e. 2, p. 1-11, 2016.

Malafaia, G.C.; Mores, G.V.; Casagranda, Y.G.; Barcellos, J.O.J.; Costa, F.P. The Brazilian beef cattle supply chain in the next decades. Livestock Science, v. 253, 2021.

Nguyen, T.T.H.; Doreau, M.; Corson, M.S.; Eugène, M.; Delaby, L.; Chesneau, G.; Gallard, Y.; Van der Werf, H.M.G. Effect of dairy production system, breed and co-product handling methods on environmental impacts at farm level. Journal of Environmental Management, v. 120, p. 127-137, 2013.

Oaigen, R.P; Barcellos, J.O.J.; Christofari, L.F.; Braccini Neto, J.; Oliveira, T.E; Prates, E.R. Melhoria organizacional na produção de bezerros de corte a partir dos centros de custos. Revista Brasileira de Zootecnia, v. 37, n. 3, p. 580-587, 2008.

Pegden, C.D.; Shannon, R.F.; Sadowsky, R.P. Introduction to Simulation using SIMAN, USA: McGraw-Hill, 1995.

Quinton, C.D.; Hely, F.S.; Amer, P.R.; Byrne, T.J.; Cromie, A.R. Prediction of effects of beef selection indexes on greenhouse gas emissions. Animal, v.12, n.05, p. 889-897, 2017.

Rovira, J. Manejo nutritivo de los rodeos de cría en pastoreo. Montevideo: Editorial Hemisferio Sur, 288 p., 1996.

Silva, F.C. Modelos de simulação para análise e apoio à decisão em agrossistemas. Rev. Biociência, v.8, p.7-17, 2002.

Souza, J.L.M. Modelo para análise de risco econômico aplicado ao planejamento de projetos de irrigação para a cultura do cafeeiro. 2001. 253f. Tese (Doutorado). Escola Superior de Agricultura Luiz de Queirós, Universidade de São Paulo, Piracicaba, 2001.

Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; Folke, C.; Gerten, D.; Heinke, J.; Mace, G.M.; Persson, L.M.; Ramanathan, V.; Reyers, B.; Sörlin, S. Planetary boundaries: Guiding human development on a changing planet. Science, v. 1259855, n. Section 1, p. 1-8, 2015.

Valle, E.R.; Andreotti, R.; Thiago, L.R.L. de S. Estratégias para aumento da eficiência reprodutiva e produtiva em bovinos de corte. EMBRAPA–CNPGC, Campo Grande, v. 71, 80 p., 1998.

Zervas, G.; Tsiplakou, E. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock. Atmospheric Environment, v. 49, p. 13-23, 2012.

Downloads

Published

2022-09-28

How to Cite

Abreu, L. Ângelo de, Rezende, V. T., Gameiro, A. H., & Baruselli, P. S. (2022). Effect of reduced age at first calving and an increased weaning rate on CO2 equivalent emissions in a cow-calf system. Engineering in Agriculture, 30(Contínua), 311–318. https://doi.org/10.13083/reveng.v30i1.14028

Issue

Section

Rural Buildings and Environment