Performance of constructed wetland system using different species of macrophytes in the treatment of domestic sewage treatment

Autores

DOI:

https://doi.org/10.13083/reveng.v29i1.12712

Palavras-chave:

Wastewater, Evapotranspiration, Horizontal wetlands, Typha ssp., Cyperus giganteus, Pearson correlations

Resumo

The objective is to assess the initial performance of a constructed wetland system and the development of the macrophyte species cattail(Typha spp.) (CWt), piripiri (Cyperus giganteus) (CWp), and white garland lily (Hedychium coronarium Koehne) (CWl) and an suncultivated (UNc) on the treatment of sewage from toilets and from a restaurant. Changes in hydrogen potential, electrical conductivity, total suspended solids, total solids, biochemical oxygen demand, chemical oxygen demand, turbidity, nitrate, ammonium nitrogen, total phosphate, hydraulic retention time (HRT), and potential evapotranspiration (PET) and the development and adaptation of macrophytes were measured. The surface area of ??each constructed wetland (CW) had a surface area of 16.25 m2 and average volume treated of 0.40 m3 d-1, with continuous variable horizontal subsurface flow equally fed with sewage previously treated in three septic tanks in series, with an individual useful volume of 5.100 L. The PET in CWt, CWp and CWl was higher than that of UNc. The highest pH values were obtained in the effluent of CWp, CWt, and CWl. The use of macrophytes did not influence the EC, TS, BOD5,20, COD, and nitrate were lower and ammonium nitrogen and total phosphate were higher in the effluent of CWs and UNc in relation to the influent. The efficiency indexes that showed a very strong Pearson correlations (> 90%) were pH correlated with N-NH4+, turbidity correlated with COD, TS correlated with EC, and BOD5,20 and COD correlated with NO3-.Piripiri and cattails showed the best development of plants in the second half of CW.

Downloads

Não há dados estatísticos.

Referências

ADDINSOFT. XLSAT Statistical software: version 2015.6, Paris, France (2015).

ALI, M.; ROUSSEAU, D. P. L.; AHMED, S. A full-scale comparison of two hybrid constructed wetlands treating domestic wastewater in Pakistan. Journal of Environmental Management, Elsevier, v. 210, p. 349-358, 2018.

ALMEIDA, R. A.; UCKER, F. E. Considerando a evapotranspiração no cálculo de eficiência de estações de tratamento de esgoto com plantas. Engenharia Ambiental, Espírito Santo do Pinhal, v. 8, n. 4, p. 039-045. 2011.

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Stuttgart, v. 22, n. 6, p. 711-728, 2014.

APHA. Standard Methods For The Examination Of Water And Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation. Ed. 22, Washington, DC. 2012.

BARTRONS, M.; PEÑUELAS, J. Pharmaceuticals and personal-care products in plants. Trends in Plant Science. v. 22, n. 3, p. 194–203, 2017

BOLTON, L.; JOSEPH, S.; GREENWAY, M.; DONNE, S.; MUNROE, P.; MARJO, C. E. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecological Engineering, v. 11, p. 100005, 2019.

BRASIL, M. S.; MATOS, A. T. Avaliação de aspectos hidráulicos e hidrológicos de sistemas alagados construídos de fluxo subsuperficial. Engenharia Sanitária e Ambiental. Rio de Janeiro, v.13, n. 3, p. 323-328, 2008.

BRASIL. Resolução CONAMA nº 430, de 13 de maio de 2011. Condições e padrões de lançamento de efluentes e complementa e altera a Resolução CONAMA nº 357/05. Diário Oficial da República Federativa do Brasil, 8 p. 2011.

CALLEGARI-JACQUES, S. M. Bioestatística: princípios e aplicações. Porto Alegre: Artmed, 2007.

CHEN, Z. J.; TIAN, Y. H.; ZHANG, Y.; SONG, B. R.; LI, H. C.; CHEN, Z. H. Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecological Engineering, Elsevier, v. 92, p. 243-250, 2016.

CHENG, G.; LI, Q.; SU, Z.; SHENG, S.; FU, J. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands. Journal of Cleaner Production, v. 175, p. 572–581, 2018.

COLARES, C. J. G.; SANDRI, D. Eficiência do tratamento de esgoto com tanques sépticos seguidos de leitos cultivados com diferentes meios de suporte. Ambiente e Água, Taubaté, v. 8, n. 1, p. 172-185, 2013.

COLARES, G. S.; DELL’OSBEL, N.; WIESEL, P. G.; OLIVEIRA, G. A.; LEMOS, P. H. Z.; SILVA, F. P.; LUTTERBECK, C. A.; KIST, L. T.; MACHADO, E. M. Floating treatment wetlands: a review and bibliometric analysis. Science of the Total Environment, v.714, p.1-17. 2020.

DELL’OSBEL, N.; COLARES, S. Z.; OLIVEIRA, G. A.; SOUZA, M.P.; BARBOSA, C. V.; MACHADO, E. L. Bibliometric Analysis of Phosphorous Removal Through Constructed Wetlands. Water Air Soil Pollut, v. 231, n. 117, p. 1-18. 2020.

FIA, F. R. L.; MATOS, A. T.; FIA, R.; BORGES A. C.; CECON, P. R. Effect of vegetation in constructed wetlands treating swine wastewater. Engenharia Sanitária e Ambiental. Rio de Janeiro, v. 22, n. 2, p. 302-311. 2017.

HE, Y.; PENG, L.; HUA, Y.; ZHAO, J.; XIAO, N. Treatment for domestic wastewater from university dorms using a hybrid constructed wetland at pilot scale. Environmental Science and Pollution Research. v. 25, p. 8532–8541, 2018.

IWA. Specialist group on the use of macrophytes in water pollution control, Constructed wetlands for pollution control: processes, performance, design and operation – scientific and technical report n.8. London – UK. IWA Publishing, p. 156, 2000.

KADLEC, R.H.; WALLACE, S.D. Treatment Wetlands. 2ed, CRC Press, Boca Raton, FL, New York, USA (2009).

KNOWLES, P.; DOTRO, G.; NIVALA, J.; GARCÍA, J. Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecological Engineering. v. 37, p. 99-112, 2011.

LIU, Y.; VON WIREN, N. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany. Lancaster, v. 10, n. 68, p. 2581-2592, 2017.

MA, Y.; ZHAI, Y.; ZHENG, X.; HE, S.; ZHAO, M. Rural domestic wastewater treatment in constructed ditch wetlands:Effects of influent flow ratio distribution. Journal of Cleaner Production. v. 225, p. 350-358, 2019.

MD SA’AT, S. K.; ZAMAN, N. Q.; YUSOFF, M. S. Effect of hydraulic retention time on palm oil mill effluent treatment in horizontal sub-surface flow constructed wetland. AIP Conference Proceedings, v. 2124, p. 1-9. 2019.

METCALF & EDDY, Inc. Wastewater Engineering: Treatment and Reuse. McGraw-Hill Education. 4th ed. 2003, 1819 p.

MOLLE, P.; LIENARD, A.; BOUTIN, C.; MERLIN, G.; IWEMA, A. How to treat raw sewage with constructed wetlands: an overview of the French systems. Water Sci Technol. v. 51, n. 9, p. 11-21, 2005.

NIVALA, J.; BOOG, J.; HEADLEY, T.; AUBRON, T.; WALLACE, S.; BRIX, H., MOTHES, S.; VAN AFFERDEN, M.; MÜLLER, R.A. Side-by-side comparison of 15 pilot-scale conventional and intensified subsurface flow wetlands for treatment of domestic wastewater. Sci. Total Environ. v. 658, p. 1500-1513, 2019.

PRINC?IC?, A.; MAHNE, I.; MEGUS?AR, F.; PAUL, E. A.; TIEDJE, J. M. Effects of pH and Oxygen and Ammonium Concentrations on the Community Structure of Nitrifying Bacteria from Wastewater. Applied and Environmental Microbiology. v. 64, n. 10, p. 3584-3590, 1998.

RABELLO, V. M.; TEIXEIRA, L. C. R. S.; GONÇALVES, A. P. V.; SALOMÃO, A. L. S. The Efficiency of Constructed Wetlands and Algae Tanks for the Removal of Pharmaceuticals and Personal Care Products (PPCPs): a Systematic Review. Water, Air, & Soil Pollution. v. 230, n. 236, p. 1-12, 2019.

REDDY, K. R.; D’ANGELO, E. M. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci Technol, v. 35, p. 1-10, 1997.

SARMENTO, A. P.; BORGES, A. C.; MATOS, A. T. Effect of cultivated species and retention time on the performance of constructed wetlands. Environmental Technology, v. 34, n. 8, p. 961-965, 2013.

SÉRVULO; A. C. O.; TAVARES, J. S.; PEREIRA, R. M.; SANDRI, S. Vazão e tratamento secundário de esgoto doméstico em estação de pequeno porte com sistema de zona de raízes. Irriga, Botucatu, Edição Especial Inovagri – notas técnicas, v. 1, n. 1, p. 62-71, outubro, 2019.

SILVA, I. P.; COSTA, G. B.; QUELUZ, J. G. T.; GARCIA, M. L. Effect of hydraulic retention time on chemical oxygen demand and total nitrogen removal in intermittently aerated constructed wetlands. Rev. Ambient. Água. v. 15 n. 3, p. 1-11, 2020.

SILVA, S. C.; BERNARDES, R. S.; RAMOS, M. L. G. Remoção de matéria orgânica do esgoto em solo de wetland construído. Engenharia Sanitária e Ambiental, Campina Grande, v. 20, n. 4, p. 533-542, 2015.

SOLER, C.; CRESPI, R.; SOLER, E. A Performance evaluation of artificial wetlands with floating macrophytes (Lemnas) in the treatment of urban effluents. International Journal of Hydrology. Edmond, v.3, n.2, p.129 - 136, 2019.

TRAN, N. H.; URASE, T.; NGO, H. H.; HU, J.; ONG, S. L. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresource Technology, v. 146, p. 721–731, 2013.

TRAVAINI-LIMA, F.; SIPAÚBA-TAVARES, L. H. Efficiency of a constructed wetland for wastewaters treatment. Acta Limnologica Brasiliensia.v. 24, n. 3, p. 255-265, 2012.

WANG, F.; LIU, Y.; MA, Y.X.; XR, W.; YANG H.Z. Characterization of nitrification andmicrobial community in a shallowmoss constructed wetland at cold temperatures. Ecol. Eng. v. 42, p. 124-129, 2012.

WANG, M.; ZHANG, D. Q.; DONG, J. W.; TAN, S. K. Constructed wetlands for wastewater treatment in cold climate - A review. Journal of Environmental Science, Elsevier, v. 57, p. 293-311, 2017.

YANG, M.; LU, M.; BIAN, H.; SHENG, L.; HE, C. Effects of physical clogging on the performance of a lab-scale vertical subsurface flow constructed wetland system and simulation research. Ecological Indicators. v. 92, p. 11-17, 2018.

ZHENG, B. Y.; HUANG, G.; LIU, L.; ZHAI, M. Metabolism of urban wastewater: ecological network analysis for Guangdong Province, China. Journal of Cleaner Production. Elsevier, v. 217, p. 510–519, 2019.

ZHENG, X.; ZHUANG, LIN-LAN.; ZHANG, J.; LI, X.; ZHAO, Q.; SONG, X.; DONG, C.; LIAO, J. Advanced oxygenation efficiency and purification of wastewater using a constant partially unsaturated scheme in column experiments simulating vertical subsurfaceflow constructed wetlands. Science of the Total Environment. Elsevier, v. 703, p. 1-9, 2020.

ZHANG, D. Q.; JINADASA, K. B. S. N.; GERSBERG, R. M.; LIU, Y.; NG, W. J.; TAN, S. K. Application of constructed wetlands for wastewater treatment in developing countries– a review of recent developments (2000-2013). Journal of Environmental Management, Elsevier,v. 141, p. 116-131, 2014.

ZHAO, X.; HU, Y.; ZHAO, Y.; KUMAR, L. Achieving an extraordinary high organic and hydraulic loadings with good performance via an alternative operation strategy in a multi-stage constructed wetland system. Environmental Science and Pollution Research, Springer, v. 25, p. 1-841–11853, 2018.

ZHANG, S.; XIAO, R.; LIU, F.; ZHOU, J.; LI, H.; WU, J. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms. Ecological Engineering, Elsevier, v. 97, p. 363-369, 2016.

Von SPERLING, M. Introdução à Qualidade das Águas e ao Tratamento de Esgotos - Volume 2. Princípios Básicos do Tratamento de Esgotos. Minas Gerais: UFMG; 1° Ed, volume 2, 2016.

Downloads

Publicado

2021-12-17

Como Citar

Sandri, D., & Reis, A. P. (2021). Performance of constructed wetland system using different species of macrophytes in the treatment of domestic sewage treatment. Revista Engenharia Na Agricultura - REVENG, 29(Contínua), 429–447. https://doi.org/10.13083/reveng.v29i1.12712

Edição

Seção

Recursos Hídricos e Ambientais