Manufactured Yttrium Barium Copper Nano Oxide for Medicinal Applications
DOI:
https://doi.org/10.18540/jcecvl9iss8pp16379-01eKeywords:
YBCO, Nanopartículas, Síntese Sol-Gel, Difração de Raios-X, Atividade AntibacterianaAbstract
In light of the considerable interest surrounding the antibacterial properties of nanometal oxides and high-temperature superconductors, this study focuses on the synthesis of YBa2Cu3O7 (YBCO) using the Sol-Gel method. The research delves into the experimental aspects of nanoparticle (NP) synthesis and aims to elucidate the antibacterial potential of YBCO NPs, a high-temperature superconductor, against four distinct bacteria. These bacteria were subjected to varying concentrations of YBCO NPs (0.01 mg/ml, 0.025 mg/ml, 0.05 mg/ml, and 0.1 mg/ml). Comprehensive characterization of the synthesized nanoparticles encompassed techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. Remarkably, the Gram-positive strains, including Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus (MRSA), exhibited pronounced susceptibility to the YBCO NPs, while Gram-negative strains displayed minimal response. Intriguingly, even at elevated concentrations of 0.01, 0.025, 0.05, and 0.1 mg/ml, these bacterial strains showcased resilient resistance. This research sheds light on the potential of YBCO NPs as an antibacterial agent against specific pathogens.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Journal of Engineering and Exact Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.