Separation and purification of bromelain from pineapple residue using ultrafiltration membranes: a review
DOI:
https://doi.org/10.18540/jcecvl10iss7pp20129Keywords:
Activated carbon. Bromelain. Membrane. Pineapple waste. Ultrafiltration.Abstract
Pineapple is the most popular fruit globally, whose production increased in the last years, raising concerns about the reuse of the waste. Bromelain constitutes an attractive byproduct for various industrial sectors. Ultrafiltration (UF), widely applied in macromolecule retention processes, faces significant challenges such as fouling, which limits its effectiveness. This article reviews strategies to improve permeate flow and control fouling during bromelain recovery from pineapple residues. Prominent strategies for improving UF performance include gas sparging, vibratory or rotational modules, and pre-treatment processes like diafiltration or enzymatic treatment. While gas sparging enhances turbulence and flow, its energy efficiency is limited. Integrated approaches, such as combining MF and UF or utilizing two-stage UF systems, achieve high bromelain recovery (over 94%) and effective fouling control. Strategies involving turbulence promoters enhanced permeate flux by over 40%, while fouling mitigation techniques reduced fouling rates by up to 80%, preserving enzyme activity. These findings suggest that advancements in module design, pre-treatment processes, and turbulence-inducing systems can significantly enhance UF performance, offering promising directions for industrial bromelain recovery.
Downloads
References
ABREU, D. C. A., DE FIGUEIREDO, K. C. S. (2019) Bromelain separation and purification processes from pineapple extract. Brazilian Journal of Chemical Engineering, 36, 1029–1039. https://doi.org/10.1590/0104-6632.20190362s20180417
ARSHAD, Z. I. M., AMID, A., YUSOF, F. JASWIR, I., AHMAD, K., LOKE, S. P. (2014) Bromelain: An overview of industrial application and purification strategies. Applied Microbiology and Biotechnology, 98, 7286-7297. https://doi.org/10.1007/s00253-014-5889-y
BABU, K. S., AMAMCHARLA, J. K. (2023) Effect of bulk nanobubbles on ultrafiltration membrane performance: Physiochemical, rheological, and microstructural properties of the resulting skim milk concentrate dispersions. Journal of Food Engineering 337, 111-238. https://doi.org/10.1016/j.jfoodeng.2022.111238
COLLETTI, A., LI, S., MARENGO, M., ADINOLFI, S., CRAVOTTO, G. (2021) Recent advances and insights into bromelain processing, pharmacokinetics, and therapeutic uses. Applied Sciences, 11, 8428. https://doi.org/10.3390/app11188428
DATTABANIK, S., BANIK, I., SASMAL, H., RANA, K., DAS, S. (2022) Application of turbulence promoter in protein recovery from food wastewater by dynamic shear enhanced ultrafiltration. Journal of Water Process Engineering, 48, 102-877. https://doi.org/10.1016/j.jwpe.2022.102877
GAMARRA, F. M. C., SANTANA, J. C. C., LLANOS, S. A. V., PÉREZ, J. A. H., FLAUSINO, F. R., QUISPE, A. P. B., MENDOZA, P. C., VANALLE, R. M., CARREÑO-FARFAN, C., BERSSANETI, F. T., SOUZA, R. R., TAMBOURGI, E. B. (2022) High Retention and Purification of Bromelain Enzyme (Ananas comosus L. Merrill) from Pineapple Juice Using Plain and Hollow Polymeric Membranes Techniques. Polymers, 14, 264. https://doi.org/10.3390/polym14020264
HE, Y., HUANG, X., LI, T., LV, X., TANG, N., FENG, C., SHI, B. (2022) Ultrafiltration membrane fouling control by two-stage coagulant dosing with moderate pH adjustment. Desalination, 537. 115-893. https://doi.org/10.1016/j.desal.2022.115893
HEBBAR, U. H., SUMANA, B., HEMAVATHI, A. B., RAGHAVARAO, K. S. M. S. (2012) Separation and Purification of Bromelain by Reverse Micellar Extraction Coupled Ultrafiltration and Comparative Studies with Other Methods. Food and Bioprocess Technology, 5, 1010–1018. https://doi.org/10.1007/s11947-010-0395-4
MENG, M., LI, B., ZHU, Y., YAN, Y., FENG, Y. (2021) A novel mixed matrix polysulfone membrane for enhanced ultrafiltration and photocatalytic self-cleaning performance. Journal of Colloid and Interface Science, 599, 178–189. https://doi.org/10.1016/j.jcis.2021.04.082
MODI, A., BELLARE, J. (2019) Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe3O4 nanoparticles-decorated carboxylated graphene oxide nanosheets. International Journal of Biological Macromolecules, 135, 798–807. https://doi.org/10.1016/j.ijbiomac.2019.05.200
NOR, M. Z. M., RAMCHANDRAN, L., DUKE, M., VASILJEVIC, T. (2015) Characteristic properties of crude pineapple waste extract for bromelain purification by membrane processing. Journal of Food Science and Technology, 52, 7103–7112. https://doi.org/10.1007/s13197-015-1812-5
NOR, M. Z. M., RAMCHANDRAN, L., DUKE, M., VASILJEVIC, T. (2016) Separation of bromelain from crude pineapple waste mixture by a two-stage ceramic ultrafiltration process. Food and Bioproducts Processing, 98, 142–150. http://dx.doi.org/10.1016/j.fbp.2016.01.001
NOR, M. Z. M., RAMCHANDRAN, L., DUKE, M., VASILJEVIC, T. (2018) Performance of a two-stage membrane system for bromelain separation from pineapple waste mixture as impacted by enzymatic pretreatment and diafiltration. Food Technology and Biotechnology 56:218–227. DOI: https://doi.org/10.17113/ftb.56.02.18.5478
NOVAES, L. C. L., JOZALA, A. F., LOPES, A. M., SANTOS-EBINUMA, V. C., MAZZOLA P. G., JUNIOR, A. P. (2016) Stability, purification, and applications of bromelain: A review. Biotechnology Progress, 32, 5–13. https://doi.org/10.1002/btpr.2190
ONU. Organização das Nações Unidas. Como a gestão de resíduos colabora com o cumprimento dos ODS da ONU. 2021. Disponível em https://www.teraambiental.com.br/blog-da-tera-ambiental/como-a-gestao-de-residuos-colabora-com-o-cumprimento-dos-ods-da-onu Acesso em 16 de abril de 2024.
POLYAKOV, Y. S., ZYDNEY, A. L. (2013) Ultrafiltration membrane performance: Effects of pore blockage/constriction. Journal of Membrane Science, 434, 106–120. http://dx.doi.org/10.1016/j.memsci.2013.01.052
RODA, A., FAVERI, D. M., GIACOSA, S., DORDONI, R., LAMBRI, M. (2016) Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. Journal of Cleaner Production, 112, 4477–4484. http://dx.doi.org/10.1016/j.jclepro.2015.07.019
RUIGÓMEZ, I., GONZÁLEZ, E., RODRÍGUER-GÓMEZ, L., VERA, L. (2022) Fouling control strategies for direct membrane ultrafiltration: Physical cleanings assisted by membrane rotational movement. Chemical Engineering Journal, 436, 135-161. https://doi.org/10.1016/j.cej.2022.135161
SEGUÍ, L., MAUPOEY, P. F. (2018) An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production, 172, 1224–1231. https://doi.org/10.1016/j.jclepro.2017.10.284
SIMÕES, A. L. A., GRIPP, D. S., MAIA, G. L., JÚNIOR, J. G. E. G., RODRIGUES, M. A., CHAVES, P. M., SANTOS, T. E., FIGUEIREDO, K. C. S. (2022) Bromelain recovery from pineapple subproducts by ultrafiltration and aqueous biphasic systems: processes comparison and integration. Brazilian Journal of Chemical Engineering, 39, 175–181. https://doi.org/10.1007/s43153-021-00179-2
Books:
BAKER, R. W. (2004). Membrane technology and applications. Wiley.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Journal of Engineering and Exact Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.