High-Performance Inverse Artificial Neural Network Controller for Asynchronous Motor Control
DOI:
https://doi.org/10.18540/jcecvl10iss9pp20857Keywords:
Induction Motor,, PI-Controller, Vector Control,, Inverse ANNsAbstract
Induction motor (IM) is considered one of the most important machines in industrial applications, which requires precise and effective control of its behavior in order to improve its performance. In this paper, three control strategies based on the development of inverse artificial neural networks (IANNs) were proposed in order to control the current (Ias), electromagnetic torque (Ce), and speed (Wr) of an asynchronous machine IM. These inverse artificial neural networks have been learned from conventional control system (PI controller and vector control) data using MATLAB software. Comparison between the responses of both the classical controller and the IANNs showed the ability and effectiveness of the latter in precisely controlling the three properties of the asynchronous motor, and it also achieved better dynamic motor behavior, speed without overtaking, and good load disturbance rejection, which proves the high performance of these developed IANNs.
Downloads
References
Alitasb, G., K. (2024). Integer PI, fractional PI and fractional PI data trained ANFIS speed controllers for indirect field oriented control of induction motor. Heliyon. 10, e37822. DOI: 10.1016/j.heliyon.2024.e37822
Atif, M., Azmat, S., Khan, F., Albogamy, F., R., Khan, A. (2024). AI-Driven Thermography-based Fault Diagnosis in Single-Phase Induction Motor. Results in Engineering, 24, 103493. DOI: 10.1016/j.rineng.2024.103493
Barik, S., K., Jaladi, K., K. (2016). Five-phase induction motor DTC-SVM scheme with PI controller and ANN controller. Procedia Technol, 25. 816–823. DOI: 10.1016/j.protcy.2016.08.184
Chandrasekaran, G., Karthikeyan, P., R., Kumar, N., S., Kumarasamy, V. (2021). Test scheduling of System-on-Chip using Dragonfly and Ant Lion optimization algorithms. J Intell Fuzzy Syst, 40, 4905–4917. DOI: 10.3233/JIFS-201691
EL-Merrassi, W., Abounada, A., Ramzi, M. (2022). Performance analysis of novel robust ANN-MRAS observer applied to induction motor drive. Int J Syst Assur Eng Manag, 13(4), 2011–2028. DOI: 10.1007/s13198-021-01614-w
Gaythri, B., Thivay Prasad, D. (2019). Control Induction Motor using Neural Network. International Resurach Journal of Engineering and Technology, 6(8), 837-844.
Junior, R., F., R., dos Santos Areias, I., A., Campos, M., M., Teixeira, C., E., C.E. da Silva, C., E., Gomes G., F. (2022). Fault detection and diagnosis in electric motors using 1D convolutional neural networks with multi-channel vibration signals. Measurement, 190, 110759. DOI: 10.1016/j.measurement.2022.110759
Kada, B., El-Kebir, A., Negadi, K., Belhadj, H., Chaouch, D., E. (2020). Application of Adaptive Controller Neural Network Based on RBF NN for Temperature Control Electrical Resistance Furnace. Przeglad Elektrotechniczny. 96(6), 33. DOI:10.15199/48.2020.06.06
Kada, B., El Kebir, A., Berka, M., Belhadj, H., Chaouch, D., E. (2021). Study of designing regulator for temperature electrical resistance furnace using Kalman stochastic reconstructor. Indonesian Journal of Electrical Engineering and Computer Science, 24(1), 134-143. DOI: 10.11591/ijeecs.v24.i1.pp134-143
Karami-Shahnani, A, Dehghan-Niri, H., Nasiri-Zarandi, R., Abbaszadeh, K., Toulabi, M., S. (2023). Online inductance estimation of pm-assisted synchronous reluctance motor using artificial neural network. In 2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) (pp. 1–6). IEEE. DOI: 10.1109/PEDSTC57673.2023.10087136
Kouadria, M., Chedjara, Z., Benbouzid, M., Su, C., L., Guerrero, J., M., Babul Salam KSM Kader Ibrahim, Ahmed, H. (2024). A zoomed root-Prony technique for efficient bearing fault detection in induction motors. Results in Engineering, 24, 103367. DOI: /10.1016/j.rineng.2024.103367
Mahfoud, S., El Ouanjli, N., Derouich, A., El Idrissi, A., Hilali, A., Chetouani, E. (2024). Higher performance enhancement of direct torque control by using artificial neural networks for doubly fed induction motor. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 8, 100537. DOI: 10.1016/j.prime.2024.100537
Mekrini, Z., Bri, S. (2018). High - Performance using Neural Networks in Direct Torque Control for Asynchronous Machine. International Journal of Electrical and Computer Engineering (IJECE), 8(2), 1010-1017. DOI: 10.11591/ijece.v8i2.pp1010-101
Rajesh, R., J., Preethi, R., Mehata, P., Pandian, J. (2015). Artificial Neural Network Based Inverse ModelControl Of A Nonlinear Process. In 2015 International Conference on Computer, Communication and Control (IC4-2015). IEEE. DOI: 10.1109/IC4.2015.7375581
Salem, M., Chaouch, D., E., Fayçal Khelfi, M. (2007). Inverse neural control of nonlinear systems. In 2007 4th International Conference on Computer Integrated Manufacturing (CIP’2007).
Shekher, V., Sisodiya, A., Sinha, A., K., Harsh, H., Soren, N. (2024). Optimal tuning of PID controller for V/f control of Linear Induction Motor using Artificial Biological Intelligence. Franklin Open, 9, 100183. DOI: 0.1016/j.fraope.2024.100183
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Journal of Engineering and Exact Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.