Computational Heat Transfer and Entropy Generation Analysis of Natural Convection in a Trapezoidal Cavity

Authors

DOI:

https://doi.org/10.18540/jcecvl10iss10pp21156

Keywords:

Finite volume method, Entropy generation, Natural convection, Rayleigh’s number, Trapezoidal cavity

Abstract

A numerical study is carried out to investigate natural convective heat transfer process in a water-filled trapezoidal cavity heated from below using finite volume method in solving the governing equations. The study examined the effects of Rayleigh number (Ra = 101-106), heat source length (Ls = 0.1-0.9), angle of inclination (teta = 0º-75º) on the Nusselt number (Nu) and entropy generation of the trapezoidal cavity. The results of the investigation indicate that Nu increases when the source length increases, and the angle of inclination decreases. Also, Nu also increases with Ra when the source length and inclination angle are fixed. The total entropy is dominated by thermal entropy generation (Sthermal) and is seen to increase with source length. The results presented in isotherms and streamlines indicate that viscous and buoyancy forces are significant in the trapezoidal cavity.

Downloads

References

Abdelkarim, B. and Djedid, T. (2019). Numerical investigation of natural convection phenomena in uniformly heated trapezoidal Cylinder inside an elliptical Enclosure. Journal of Computational Applied Mechanics, 50(2), 315-323. doi: 10.22059/jcamech.2019.291495.442

Abdulkadhim, A., Abed, I. M., & Said, N. M. (2021). An exhaustive review on natural convection within complex enclosures: Influence of various parameters. Chinese Journal of Physics, 74, 365–388. https://doi.org/10.1016/j.cjph.2021.10.012

Acharya, F. M. S. (2000). Natural convection in trapezoidal cavities with baffles mounted on the upper inclined surfaces. Numerical Heat Transfer: Part A: Applications, 37(6), 545-565. https://doi.org/10.1080/104077800274082

Boussaid, M., Djerrada, A., & Bouhadef, M. (2003). Thermosolutal transfer within trapezoidal cavity. Numerical Heat Transfer, Part A: Applications, 43(4), 431–448. https://doi.org/10.1080/10407780307362

Brito, R. F., Teixeira, R. L. P., Siqueira, A. M. de O., Lacerda, J. C. de, Fetuga, I. A., Abderrahmane, K., & Campos, J. C. C. (2024). Analysis of Contact Thermal Resistance and the Use of Coatings on Heat Transfer in Cemented Carbide Metal Cutting Tools. Revista De Gestão Social E Ambiental, 18(7), e05929. https://doi.org/10.24857/rgsa.v18n7-085

Dong, Z. F., and Ebadian, M. A. (1994). "Investigation of Double-Diffusive Convection in a Trapezoidal Enclosure." ASME. J. Heat Transfer. May 1994; 116(2): 492–495. https://doi.org/10.1115/1.2911426

Fetuga, I. A., Olakoyejo, O. T., Abolarin, S. M., Adio, S. A., Gbegudu, J. K., Adewumi, O. O.,

Oluwatusin. O., Aderemi, K. S. & de Siqueira, A. M. O. (2024). Computational fluid dynamics of free convection and radiation on thermal performance of light emitting diode applications with trapezoidal-finned heat sink. Case Studies in Thermal Engineering, 61, 105078. https://doi.org/10.1016/j.csite.2024.105078

Gholizadeh MM, Nikbakhti R. (2018). Heat and mass transfer natural convection in a partially heated Trapezoidal cavity. Int Rob Auto J.; 4(3):236-240. DOI: 10.15406/iratj.2018.04.00128

Gowda, B. K., Rajagopal, M. S., & Seetharamu, K. N. (2019). Heat transfer in a side heated trapezoidal cavity with openings. Engineering Science and Technology, an International Journal, 22(1), 153-167. https://doi.org/10.1016/j.jestch.2018.04.017

Horimek, A., Nekag, E. (2020). Natural convection cooling of a heat source placed at the bottom of a square cavity. Effect of source length, position, thermal condition and Prandtl number. International Journal of Heat and Technology, Vol. 38, No. 3, pp. 722-737. https://doi.org/10.18280/ijht.380317

Kumar, S. (2004). Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker. Renewable Energy, 29(2), 211–222. https://doi.org/10.1016/S0960-1481(03)00193-9

Kuyper, R. A., & Hoogendoorn, C. J. (1995). Laminar natural convection flow in trapezoidal enclosures. Numerical Heat Transfer, Part A: Applications, 28(1), 55–67. https://doi.org/10.1080/10407789508913732

Mamun, M. A. H., Tanim, T. R., Rahman, M. M., Saidur, R., & Shuichi, N. (2011). Analysis of mixed convection in a lid-driven trapezoidal cavity. In A. Amimul (Ed.), Convection and Conduction Heat Transfer. IntechOpen. https://doi.org/10.5772/21108

Mebarek-Oudina, F., Fares, R., Aissa, A., Lewis, R. W., & Abu-Hamdeh, N. H. (2021). Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. International Communications in Heat and Mass Transfer, 125, 105279. https://doi.org/10.1016/j.icheatmasstransfer.2021.105279

Mustafa, A. W., & Ghani, I. A. (2012). Natural convection in trapezoidal enclosure heated partially from below. Al-Khwarizmi Engineering Journal, 8(1), 76-85. https://www.alkej.uobaghdad.edu.iq/index.php/alkej/article/view/107

Mustafa, M.A.S. & Hussain, H.M. & Abtan, A.A. & Habeeb, Laith. (2020). Review on mixed convective heat transfer in different geometries of cavity with lid driven. Journal of Mechanical Engineering Research and Developments. 43. 12-25.

Natarajan, E., Roy, S., & Basak, T. (2007). Effect of Various Thermal Boundary Conditions on Natural Convection in a Trapezoidal Cavity with Linearly Heated Side Wall(s). Numerical Heat Transfer, Part B: Fundamentals, 52(6), 551–568. https://doi.org/10.1080/10407790701563623

Ojuro, J. N., Sobamowo, G. M., & Siqueira, A. M. de O. (2024). Heat Transfer Management of Thermal and Electronics Systems using Convective-Radiative Porous Fins with Thermal Contact Resistance and Diabatic Tip. The Journal of Engineering and Exact Sciences, 10(5), 18523. https://doi.org/10.18540/jcecvl10iss5pp18523

Patankar, S. (2018). Numerical heat transfer and fluid flow. CRC Press. https://doi.org/10.1201/9781482234213

Reddy ES, Panda S, Nayak MK, Makinde OD. Cross flow on transient double-diffusive natural convection in inclined porous trapezoidal enclosures. Heat Transfer. 2021; 50: 849–875. https://doi.org/10.1002/htj.21908

Roslan, R., Saleh, H., & Hashim, I. (2011). Buoyancy-driven heat transfer in nanofluid-filled trapezoidal enclosure with variable thermal conductivity and viscosity. Numerical Heat Transfer, Part A: Applications, 60(10), 867–882. https://doi.org/10.1080/10407782.2011.616778

Sadeghi, M. S., Anadalibkhah, N., Ghasemiasl, R., Armaghani, T., Dogonchi, A. S., Chamkha, A. J., Ali, H., & Asadi, A. (2022). On the natural convection of nanofluids in diverse shapes of enclosures: An exhaustive review. Journal of Thermal Analysis and Calorimetry, 147(1), 1–22. https://doi.org/10.1007/s10973-021-10773-1

Sadeghi, M.S., Anadalibkhah, N., Ghasemiasl, R. et al. On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. J Therm Anal Calorim 147, 1–22 (2022). https://doi.org/10.1007/s10973-020-10222-y

Selimefendigil, F., Öztop, H. F., & Al-Salem, K. S. (2016). Control of natural convection heat transfer in ferrofluid-filled trapezoidal cavities with a magnetic dipole source. Progress in Computational Fluid Dynamics, an International Journal, 16(6), 397–406. https://doi.org/10.1504/PCFD.2016.080057

Shirani, N., & Toghraie, D. (2021). Numerical investigation of transient mixed convection of nanofluid in a cavity with non-Darcy porous inner block and rotating cylinders with harmonic motion. Scientific Reports, 11(1), 17281. https://doi.org/10.1038/s41598-021-96733-6

Silva, A. ; Fontana, E. ; Marcondes, F. ; Mariani, V. C. (2010). Natural Convection within Trapezoidal Cavity with Two Baffles on The Lower Horizontal Surface. In: 13th Brazilian Congress of Thermal Sciences and Engineering, 2010, Uberlândia. Proceedings of ENCIT 2010. Uberlândia.

Silva, A., Fontana, É., Mariani, V. C., & Marcondes, F. (2012). Numerical investigation of several physical and geometric parameters in the natural convection into trapezoidal cavities. International Journal of Heat and Mass Transfer, 55(23-24), 6808-6818. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.088

Sivarami Reddy, C., Ramachandra Prasad, V., & Jayalakshmi, K. (2021). Numerical simulation of natural convection heat transfer from a heated square cylinder in a square cavity filled with micropolar fluid. Heat Transfer, 50(6), 5267-5285. https://doi.org/10.1002/htj.22123

Teamah, M. A., & Shehata, A. I. (2016). Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities. Alexandria Engineering Journal, 55(2), 1037–1046. https://doi.org/10.1016/j.aej.2016.02.033

Van Der Eyden, J. T., Van Der Meer, T. H., Hanjali?, K., Biezen, E., & Bruining, J. (1998). Double-diffusive natural convection in trapezoidal enclosures. International Journal of Heat and Mass Transfer, 41(13), 1885–1898. https://doi.org/10.1016/S0017-9310(97)00353-0

Venkatadri, K., Gaffar, S. A., Prasad, V. R., Khan, B. M. H., & Beg, O. A. (2019). Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure. International Journal of Automotive and Mechanical Engineering, 16(4). https://doi.org/10.15282/ijame.16.4.2019.13.0547

Downloads

Published

2024-11-27

How to Cite

Olakoyejo, O. T., Adewumi, O. O., Oloruntoba, O., Fetuga, I. A., Abolarin, S. M., Ademolu, O. A., Yekini, A. A., Siqueira, A. M. de O., & Campos , J. C. C. (2024). Computational Heat Transfer and Entropy Generation Analysis of Natural Convection in a Trapezoidal Cavity. The Journal of Engineering and Exact Sciences, 10(10), 21156. https://doi.org/10.18540/jcecvl10iss10pp21156

Issue

Section

General Articles