Quantification of Heavy Metals (Pb2+, Zn2+, Cd2+) by Square Wave Voltammetry through Anodic Re-dissolution in Landfill Leachate
DOI:
https://doi.org/10.18540/jcecvl11iss1pp21506Keywords:
Chemical precipitation, Heavy metals, Leachate, Square wave voltammetry, Removal efficiencyAbstract
The rapid increase in waste production, driven by the Industrial Revolution, has led to significant environmental challenges, particularly the contamination of soil and water from landfill leachate. This study aims to evaluate the removal of heavy metals (zinc, cadmium, and lead) from landfill leachate through chemical precipitation using the analytical technique of square wave voltammetry by anodic re-dissolution. The study involved sequential stages, starting with adjustments to the electroanalytical method and calibration curve development, followed by precipitation assays with a synthetic metal solution to optimize variables for heavy metal removal. Precipitation experiments were conducted using zinc, cadmium, and lead ions with calcium hydroxide and sodium carbonate, and voltammetric analyses were performed using square wave anodic stripping voltammetry to assess metal concentrations. The study examined the electrochemical behavior of Bi³? using square wave voltammetry, revealing linear relationships between peak current and frequency, indicating reversibility in the reaction. Optimization of parameters such as frequency, step, and pulse amplitude improved the precision and selectivity of the analysis. Bi³? concentration was optimized for maximum electroanalytical response, with a concentration of 1.25 mg L?¹ selected. Deposition time was also optimized, with 300 seconds providing the best results. Metal removal efficiency using precipitating agents (Ca(OH)? and Na?CO?) was analyzed, showing higher efficiency for lead and cadmium with Ca(OH)?. The study highlights the significance of pH and agent concentration in the removal process. This study evaluated the removal of heavy metals (zinc, cadmium, and lead) from landfill leachate using chemical precipitation with calcium hydroxide and sodium carbonate. The process achieved high removal rates, particularly for lead (97.97%). Square wave voltammetry was successfully developed for precise quantification, with statistical validation confirming its reliability for this application.
Downloads
References
Almeida, Í. G., Dornelas, K. C., Schneider, R. M. & Bongiovani, M. C. (2022). Avaliação da toxicidade de efluente de aterro sanitário utilizando semente de alface Lactuca sativa. Revista Ibero Americana de Ciências Ambientais, 13(3), 163-172. doi: https://doi.org/10.6008/CBPC2179-6858.2022.003.0013
Ballão, M. de C. R. (2022). Avaliação espaço-temporal da qualidade do lixiviado do aterro sanitário de Curitiba-PR após tratamento por sistema de raízes. Dissertação de Mestrado, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil.
Cagni, G. S., Prazeres, J. A., Leal, D., Constantin, P. P., Sousa, C., Silva, C. R. & Conte, H. (2022). Bioindicator Organisms of Heavy Metals: a review. Ibero-American Journal of Environmental Sciences, 13(1), 179-194. doi: https://doi.org/10.6008/CBPC2179-6858.2022.001.0015
Chen, Q. et al. (2009). Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Research, 43(10), 2605-2614. doi: https://doi.org/10.1016/j.waters.2009.03.007
Corso, B. L., Scandelai, A. P. J. & Tavares, C. R. G. (2015). Processos oxidativos avançados: remoção de metais em lixiviado de aterro sanitário com O3, O3/TiO2 e O3/ZnO. Química em Iniciação Científica, 1(3), 258-263. doi: https://doi.org/10.5151/chemeng-cobeqic2015-304-33889-259994
Dobke, D., Martinez, J. F., Betemps, G. R. & Sanches Filho, P. J. (2020). Determinação de metais pesados em suco de uvas por espectrometria de absorção atômica em chama - F AAS. Revista Thema, 17(1), 114-123. doi: https://doi.org/10.15536/thema.V17.2020.114-123.1166
Duffus, J H. (2002). “Heavy Metals” - A Meaningless Term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807. doi: https://doi.org/10.1351/pac200274050793
Fernández, Z. H. et al. (2015). Application of Cold Vapor-Atomic Absorption (CVAAS) Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control, 48, 37-42. doi: https://doi.org/10.1016/j.foodcont.2014.05.056
Ferraz, F. de M. (2014). Estudo de Tratabilidade dos Lixiviados de Aterros Sanitários – Ênfase no Tratamento Consorciado com Sanitário em Sistemas Aeróbios. Tese de Doutorado, Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, SP, Brasil.
Fujii, E. H. et al. (2019). Granulometric composition of the upflow filter for post-treatment of landfill leachate. Engenharia Sanitária e Ambiental, 24(3), 525-535. doi: https://doi.org/10.1590/S1413-41522019185213
Galdámez, E. V. C. (2012). Aplicação das Técnicas de Planejamento e Análise de Experimentos na Melhoria da Qualidade de um Processo de Fabricação de Produtos Plásticos. Dissertação de Mestrado, Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, SP, Brasil.
Ghosh, P., Samanta, A. N. & Ray, S. (2011). Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination, 266(1-3), 213-217. doi: https://doi.org/10.1016/j.desal.2010.08.029
Hu, H. (2002). Human health and heavy metals. Life Support: The Environment and Human Health. MIT Press: Cambridge, MA, USA, 65-81.
Kefala, G. (2003). A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta, 61(5), 603-610. doi: https://doi.org/10.1016/S0039-9140(03)00350-3
Montgomery, D. C. & Runger, G. C. (2021). Estatística Aplicada e Probabilidade para Engenheiros. LTC.
Moraes, D. et al. (2022). Environmental effects of leachate extracts from reclaimed asphalt pavement: determination of metals, polycyclic aromatic hydrocarbon and acute toxicity to Daphnia magna. Engenharia Sanitária e Ambiental, 27(5), 9290-937. doi: https://doi.org/10.1590/S1413-415221200283
Moschem, J. da C. & Gonçalves, P. R. (2020). Impact of Heavy Metals: An Analysis of Biochemical and Cellular Effects. Health and Biosciences, 1(2), 88-100. doi: https://doi.org/10.47456/hb.v1i2.31629
Nagashima, L. A., Barros Júnior, C. de., Silva, C. A da & Fujimura, A. S. (2009). Avaliação dos níveis de metais pesados em efluente líquido percolado do aterro sanitário de Paranavaí, Estado do Paraná, Brasil. Acta Scientiarum. Health Science, 31(1), 1-8. doi: https://doi.org/10.4025/actascihealthsci.v31i1.1154
Nascentes, A. L. et al. (2020). Avaliação da toxicidade de lixiviado de aterro sanitário utilizando germinação de sementes de milho. Revista de Estudos Ambientais, 21(2), 20-30. doi: https://doi.org/10.7867/1983-1501.2019v21n2p20-30
Oliveira, E. G. de et al. (2021). Avaliação da toxicidade de microrganismos anaeróbios e aeróbios de lixiviado de aterro sanitário e do efluente produzido pelo processo fenton. Revista Ibero-Americana de Ciências Ambientais, 12(8), 198-210. doi: https://doi.org/10.6008/CBPC2179-6858.2021.008.0019
Pereira, A. et al. (2020). Análise da viabilidade da construção de um aterro sanitário no município de rancharia (sp) por meio de engenharia econômica. Colloquium Exactarum, 12(1), 73-85. doi: https://doi.org/10.5747/ce.2020.v12.n1.e310
Petovar, B., XHanari, K. & Finšgar, M. (2017). A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Analytica Chimica Acta, 1004, 10-21. doi: https://doi.org/10.1016/j.aca.2017.12.020
Reis, J. M. Dos et al. (2022). Técnicas de remoção de metais de águas residuárias: uma revisão de literatura. Research, Society and Development, 11(2), e5251126100. doi: https://doi.org/10.33448/rsd-v11i2.26100
Ribeiro, M. M. M. S. et al. (2018). Accumulation of heavy metals and alterations of the physical and chemical properties of the litoral dunes, Geociências, 37(3), 543-553. doi: https://doi.org/10.5016/geociencias.v37i3.11106
Rocha, E. E. M da. (2013). Precipitação química associada aos processos de tratamento de lixiviados. 2013. Tese de Doutorado, Universidade Federal de Pernambuco, Recife, PE, Brasil.
Silva, F. B. da. (2009). Tratamento combinado de lixiviados de aterros sanitários. Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
Souto, G. D. de B. (2009). Lixiviado de aterros sanitários brasileiros – estudo de remoção do nitrogênio amoniacal por processo de arraste com ar (“stripping”). Tese de Doutorado, Universidade de São Carlos, São Carlos, SP, Brasil.
Souza, D., Machado, S. & Avaca, L. (2003). Voltametria de onda quadrada. Primeira parte: aspectos teóricos. Química Nova, 26(1), 81-89. doi: https://doi.org/10.1590/S0100-40422003000100015
Vieira, R. M., Souza, D. H., Gode, J. N., Bittar, B. D., Trevisan, V. & Skoronski, E. (2020). Avaliação do desempenho operacional de uma estação de tratamento de lixiviado de aterro sanitário. Revista Ibero Americana de Ciências Ambientais, 11(1), 131-145. doi: https://doi.org/10.6008/CBPC2179-6858.2020.001.0013
Wang, J. et al. (2001). Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Analytica Chimica Acta, 434(1), 29-34. doi: https://doi.org/10.1016/S0003-2670(01)00818-2
World Health Organization. (2006). Guidelines for drinking-water quality: recommendations. World Health Organization.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Journal of Engineering and Exact Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.