EVALUATION AND COMPARATIVE STUDY OF THE ENERGY POTENTIAL OF BIOGAS PRODUCED IN UASB REACTORS OF SEWAGE TREATMENT STATION
DOI:
https://doi.org/10.18540/jcecvl3iss7pp0899-0919Keywords:
Biogas, Aspen HYSYS, Bioenergy, Sewage treatment station, Economic analysis.Abstract
Sanitary landfills and sewage treatment plants are primarily responsible for the production of biogas, which can cause serious environmental problems when emitted uncontrollably. One of the most promising forms of exploitation of the biogas is the production of electric, thermal or mechanical energy. In this study, simulations were performed through the simulator Aspen HYSYS v8.8 software to evaluate the economic and energy impact of the biogas purification process in a CHP (Combined Heat and Power) plant. The performance of the comparative study considered two energy production plants, one linked to the purification process and the other performing the direct burning of biogas for the production of electricity. The costs for the purification and non-purification process were US $ 17,600,000.00 and US $ 13,950,000.00, respectively. The minimum selling price (MSP) was estimated at 6.59 (US$/KWh) for the purification process and 0.52 (US$/KWh) for the process without purification. The amount of surplus electricity after meeting the energy demands of the Laboreaux effluent treatment plant (ETE) was also evaluated.
Downloads
References
BAUER, F., PERSSON, T., HULTEBERG, C., TAMM, D. Biogas Upgrading – Review of Commercial Technologies. SGC Rapport 2013:270, Swedish Gas Technology Center, Malmö, 2013.
CHAEMCHUEN, S., ZHOU, K., VERPOORT, F. From Biogas to Biofuel: Materials Used for Biogas Cleaning to Biomethane. Chembioeng Reviews, Wiley-Blackwell, [s.l.], v. 3, n. 6, pp. 250-265, 2016.
COURTAUD, L., PEREGRINA, C., CREST, M., SABLAYROLLES, M.L., AUDIC, J. M., ARLABOSSE, P. Alternative fuels derived from organic waste: The case of sewage sludge characterization as a potential energy source. In: Proceedings of the 13th International symposium on energy from biomass and waste, Venice, Italy. 2010.
DE SENA, R.F., CLAUDINO, A., MORETTI, K., BONFANTI, I.C., MOREIRA, R.F.P.M., JOSÉ, H.J. Biofuel application of biomass obtained from a meat industry wastewater plant through the flotation process – A case study. Resources Conservation and Recycling. 2007.
DEUBLEIN, D. STEINHAUSER, A. Biogas from waste and renewable resources: An introduction. Wiley-V CH, Weinheim, pp. 7-23, 2008.
DIAS, M. O. S. Desenvolvimento e otimização de processos de produção de etanol de primeira e segunda geração e eletricidade a partir da cana-de-açúcar. 2011. 253 f. Tese (Doutorado em Engenharia Química) – Universidade Estadual de Campinas, Campinas. 2011.
ELFATTAH, T.A., ELDRAINY, Y.A., ATTIA, A. Utilization of Aspen HYSYS simulation to determine the optimum absorber working pressure needed to achieve more than 0.99 methane purity. International Journal of Information Research and Review, v.3, pp. 1739–1744, 2016.
EUROPEAN COMMISSION. Environmental pressure indicators for the EU. Office for official publications of the European Communities. Luxembourg. 2001.
FONSECA, A. R., GOMES, M. L. A. C. N. Eficiência energética e a queima de combustíveis limpos. 2009. 89 f. Tese (Mestrado em Engenharia Química) – Instituto Superior de Engenharia do Porto, Politécnico do Porto, Porto. 2009.
FONTS, I., AZURA, M., GEA, G., MURILLO, M.B. Study of the pyrolysis liquids obtained from different sewage sludge. Journal of Analytical and Applied Pyrolysis, v. 85, pp. 184–191, 2009.
GUZMAN MERCADO, A. Remoção de sulfeto de hidrogênio de biogás em instalação piloto com óxido de ferro. 2010. 1124p. Dissertação (Mestrado em Engenharia Ambiental) – Universidade Federal de Santa Catarina, Florianópolis, 2010.
HAMAGUCHI, M., VAKKILAINEN, E. Corrosão em tubos de superaquecedor de caldeiras de recuperação: um desafio. Revista O Papel, v. 71, nº 6, pp. 57-71, 2010.
LOUREIRO, J. M., KARTEL, M. T. Combined and Hybrid Adsorbents: Fundamentals and Applications. Springer Science & Business Media, Heidelberg, 2006.
METCALF E EDDY. Wastewater Engineering Treatment Disposal Reuse. 4. ed. New York, McGraw - Hill Book, 1815p. 2003.
NOYOLA, A., MORGAN-SAGASTUME, J.M., LÓPEZ-HERNÁNDEZ, J.E. Treatment of biogas produced in anaerobic reactors for domestic wastewater: Odor control and energy/resource recovery. Reviews in Environmental Science and Biotechnology 5, pp. 93–114, 2006.
ROSA, A.P., LOBATO, L.C. DA S., BORGES, J.M., MELO, G.C.B., CHERNICHARO, C.A. L. Potencial energético e alternativas para o aproveitamento do biogás e lodo de reatores UASB: estudo de caso Estação de tratamento de efluentes Laboreaux (Itabira). Engenharia Sanitária e Ambiental 21, pp. 315–328, 2016.
RYCKEBOSCH, E., DROUILLON, M., VERVAEREN, H. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy 35, pp. 1633–1645, 2011.
SIRCAR, S. Basic Research Needs for Design of Adsorptive Gas Separation Processes. Ind. Eng. Chem. Res., v. 45 (16), pp. 5435-5448, 2006.
SISTEMA FIRJAN. Pesquisa e Estudos Econômicos: Ambiente de Negócios. Rio de Janeiro: Sistema Firjan, 2017. Disponível em: http://www.firjan.com.br, consultado em junho de 2017.
SISTEMA NACIONAL DE INFORMAÇÕES SOBRE SANEAMENTO – SNIS. Diagnóstico dos serviços de água e esgotos. Site institucional, 2017. Disponível em: http://www.snis.gov.br, consultado em maio de 2017.
TOCK, L., GASSNER, M., MARÉCHAL, F. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy, v. 34 (12), pp. 1838–1854, 2010.
VAIDYA, P. D., KENIG, E. Y. CO2-alkanolamine reaction kinetics: A review of recent studies. Chem. Eng. Technol, v. 30 (11), pp. 1467–1474, 2007.
YANG, R. T. Adsorbents: Fundamentals and Applications. John Wiley & Sons, Hoboken, 2003.
ZARE ALIABAD, H., MIRAZEI, S. Removal of CO2 and H2S using Aqueous Alkanolamine solutions. World Academy of Science, Engineering and Technology, v. 49, pp. 51-59, 2009.