INVESTIGAÇÃO DA INFLUÊNCIA DA DOPAGEM DE CONDUTORES PROTÔNICOS DE CERATO DE BÁRIO
DOI:
https://doi.org/10.18540/jcecvl3iss8pp1271-1279Keywords:
Condutor Protônico, Cerato de Bário, Dopagem, PerovskitaAbstract
Com a crescente demanda para sistemas de energia eficientes e ambientalmente amigáveis, a conversão direta de combustíveis gasosos em eletricidade por células combustíveis recebeu tremenda atenção nas últimas décadas. Sendo assim, o estudo da síntese e sinterização do cerato de bário, um dos materiais mais promissores entre as células combustíveis, é de suma importância para aperfeiçoá-lo ao se obter novos pós e microestruturas diferenciadas, tornando essas células economicamente viáveis. A síntese pelo método de precursores poliméricos foi utilizada para o estudo da influência da dopagem do BaCeO3 com Y3+ como substituição parcial ao íon Ce4+. Os pós sintetizados foram caracterizados por análise térmica diferencial, difratometria de raios X, microscopia eletrônica de varredura, e por BET. Os resultados mostraram que foi possível obter BaCeO3 dopadas com Y3+ , que o método de síntese favoreceu na formação da fase a 900 °C/2h e que o efeito da dopagem com o Y3+ no cerato de bário (BaCeO3) favoreceu na redução do tamanho médio das partículas de 182 nm (sem dopante) para 94 nm (com o 20% Y3+ ).Downloads
Download data is not yet available.
References
BABU A.S., BAURI R.; Phase evolution and morphology of nanocrystalline
BaCe0.9Er0.1O3?? proton conducting oxide synthesised by a novel modified solution combustion route. Journal of Physics and Chemistry of Solids. v.87, p.80–86, 2015.
GODINHO M.J., BUENO P.R.; ORALANDI M.O.; LEITE E.R.; LONGO E. Ionic
conductivity of Bi4Ti0.2V1.8O10.7 polycrystalline ceramics obtained by the polymeric precursor route. Materials Letters. v. 57 , p. 2540-2544, 2003.
GONÇALVES R.F., LIMA A.R.F., GODINHO M.J. MOURA A.P., ESPINOSA J.
LONGO E., MARQUES A.P.A. Synthesis of Pr3+-doped CaTiO3 using polymeric precursor and microwave-assisted hydrothermal methods: A comparative study. Ceramics International, v. 41, p.12841–12848, 2015.
GU Y., LIU Z., OUYANG J., YAN F. and ZHOU Y. Structure and electrical
conductivity of BaCe0.85Ln0.15O3-d ( Ln- Gd, Y, Yb) ceramics. Electrochimica Acta, v. 105, p. 547–553, 2013
HAKIM M., YOO C.Y. JOO J.H., YU H. Enhanced durability of a proton conducting
oxide fuel cell with a purified yttrium-doped barium zirconate-cerate electrolyte. Journal of Power Sources. v. 278, p.320-324, 2015.
IWAHARA H. Technological challenges in the application of proton conducting
ceramics. Solid State Ionics. v. 77, p.289-298, 1995.
KAKIHANA M., YOSHIMURA M. Synthesis and characteristics of complex
multicomponent oxides prepared by polymer complex method. Bulletin of the Chemical Society Japan. v.72, p.1427-1443, 1999.
KHANDELWAL M., VENKATASUBRAMANIAN A. PRASANNA T.R.S.,
GOPALAN P. Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate. Journal of the European Ceramic Society, v. 31, n. 4, p.559-568, 2011.
KNIGTH K. S., SOAR M. and BONANOS N. Crystal structures of gadolinium and
yttrium-doped barium cerate, Journal of Materials Chemistry., v. 2, p. 709-718, 1992.
KREUER K.D., ADAMS S., MÜNCH W. FUCHS A., KLOCK U., MAIER J. Proton
conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics. v.145, p. 295–306, 2001.
LEE T. R., LIMA D. K., SINGH B., SONG S. J. Study of mass transport kinetics in
co-doped Ba0.9Sr0.1Ce0.85Y0.15O3?? by electrical conductivity relaxation. Solid State Ionics v.289, p. 9-16, 2016.
LIU Y. RAN R., LI S., JIAO Y., TADE M.O., SHAO Z. Significant performance
enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress–egress approach. Journal of Power Sources. v. 257, p.308-318, 2014.
MEDVEDEV D.A., LYAGAEVA J.G.; GORBOVA E.V.; DEMIN A.K.;
TSIAKARAS P. Advanced materials for SOFC application: Strategies for the
development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science. v.75, p.38–79, 2016.
NASANI N, RAMASAMY D., MIKHALEV S, KOVALESVSKY A.V. FAGG D.P.
Fabrication and electrochemical performance of a stable, anode supported thin BaCe0.4Zr0.4Y0.2O3-? electrolyte Protonic Ceramic Fuel Cell. Journal of Power Sources, v. 278, p.582-589, 2015.
NORBY T., Solid-state protonic conductors: principles, properties, progress and
prospects. Solid State Ionics. v.125, p 1-11, 1999.
PECHINI M.P., U.S. Patent. No 3, 330 (1967) 697.
SUBRAMANIYAN A., TONG J., O’HAYRE R.P., SAMMES N.M. ubramaniyan,
Archana et al. Sintering Studies on 20 mol% Yttrium-Doped Barium Cerate. Journal of The American Ceramic Society. v. 94, n. 6, p.1800-1804, 2011.
YANG, N., TEBANO A., CASTRO D., BALESTRINO G., D’EPIFANIO A.
LICOCCIA S., DI BARTOLOMEO E. Deposition and electrochemical characterization of Yttrium doped Barium cerate and zirconate heterostructures. Thin Solid Films. v.562, p.264-268, 2014.
ZAMPIERI M., LAZARO S.R., PASKOCIMAS C.A., FERREIRA A.G., LONGO E.
VARELA J.A. Structural Analysis of Ti and Pb Citrate Using NMR and FT-Raman Signals and Quantum Mechanics Simulations. Journal of Sol-Gel Science and Technology. v.37, p.9–17, 2006.
BaCe0.9Er0.1O3?? proton conducting oxide synthesised by a novel modified solution combustion route. Journal of Physics and Chemistry of Solids. v.87, p.80–86, 2015.
GODINHO M.J., BUENO P.R.; ORALANDI M.O.; LEITE E.R.; LONGO E. Ionic
conductivity of Bi4Ti0.2V1.8O10.7 polycrystalline ceramics obtained by the polymeric precursor route. Materials Letters. v. 57 , p. 2540-2544, 2003.
GONÇALVES R.F., LIMA A.R.F., GODINHO M.J. MOURA A.P., ESPINOSA J.
LONGO E., MARQUES A.P.A. Synthesis of Pr3+-doped CaTiO3 using polymeric precursor and microwave-assisted hydrothermal methods: A comparative study. Ceramics International, v. 41, p.12841–12848, 2015.
GU Y., LIU Z., OUYANG J., YAN F. and ZHOU Y. Structure and electrical
conductivity of BaCe0.85Ln0.15O3-d ( Ln- Gd, Y, Yb) ceramics. Electrochimica Acta, v. 105, p. 547–553, 2013
HAKIM M., YOO C.Y. JOO J.H., YU H. Enhanced durability of a proton conducting
oxide fuel cell with a purified yttrium-doped barium zirconate-cerate electrolyte. Journal of Power Sources. v. 278, p.320-324, 2015.
IWAHARA H. Technological challenges in the application of proton conducting
ceramics. Solid State Ionics. v. 77, p.289-298, 1995.
KAKIHANA M., YOSHIMURA M. Synthesis and characteristics of complex
multicomponent oxides prepared by polymer complex method. Bulletin of the Chemical Society Japan. v.72, p.1427-1443, 1999.
KHANDELWAL M., VENKATASUBRAMANIAN A. PRASANNA T.R.S.,
GOPALAN P. Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate. Journal of the European Ceramic Society, v. 31, n. 4, p.559-568, 2011.
KNIGTH K. S., SOAR M. and BONANOS N. Crystal structures of gadolinium and
yttrium-doped barium cerate, Journal of Materials Chemistry., v. 2, p. 709-718, 1992.
KREUER K.D., ADAMS S., MÜNCH W. FUCHS A., KLOCK U., MAIER J. Proton
conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics. v.145, p. 295–306, 2001.
LEE T. R., LIMA D. K., SINGH B., SONG S. J. Study of mass transport kinetics in
co-doped Ba0.9Sr0.1Ce0.85Y0.15O3?? by electrical conductivity relaxation. Solid State Ionics v.289, p. 9-16, 2016.
LIU Y. RAN R., LI S., JIAO Y., TADE M.O., SHAO Z. Significant performance
enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress–egress approach. Journal of Power Sources. v. 257, p.308-318, 2014.
MEDVEDEV D.A., LYAGAEVA J.G.; GORBOVA E.V.; DEMIN A.K.;
TSIAKARAS P. Advanced materials for SOFC application: Strategies for the
development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science. v.75, p.38–79, 2016.
NASANI N, RAMASAMY D., MIKHALEV S, KOVALESVSKY A.V. FAGG D.P.
Fabrication and electrochemical performance of a stable, anode supported thin BaCe0.4Zr0.4Y0.2O3-? electrolyte Protonic Ceramic Fuel Cell. Journal of Power Sources, v. 278, p.582-589, 2015.
NORBY T., Solid-state protonic conductors: principles, properties, progress and
prospects. Solid State Ionics. v.125, p 1-11, 1999.
PECHINI M.P., U.S. Patent. No 3, 330 (1967) 697.
SUBRAMANIYAN A., TONG J., O’HAYRE R.P., SAMMES N.M. ubramaniyan,
Archana et al. Sintering Studies on 20 mol% Yttrium-Doped Barium Cerate. Journal of The American Ceramic Society. v. 94, n. 6, p.1800-1804, 2011.
YANG, N., TEBANO A., CASTRO D., BALESTRINO G., D’EPIFANIO A.
LICOCCIA S., DI BARTOLOMEO E. Deposition and electrochemical characterization of Yttrium doped Barium cerate and zirconate heterostructures. Thin Solid Films. v.562, p.264-268, 2014.
ZAMPIERI M., LAZARO S.R., PASKOCIMAS C.A., FERREIRA A.G., LONGO E.
VARELA J.A. Structural Analysis of Ti and Pb Citrate Using NMR and FT-Raman Signals and Quantum Mechanics Simulations. Journal of Sol-Gel Science and Technology. v.37, p.9–17, 2006.
Downloads
Published
2017-10-04
How to Cite
Nascimento, H. B. B. C. do, Godinho, M. J., & Kiminami, R. H. G. A. (2017). INVESTIGAÇÃO DA INFLUÊNCIA DA DOPAGEM DE CONDUTORES PROTÔNICOS DE CERATO DE BÁRIO. The Journal of Engineering and Exact Sciences, 3(8), 1271–1279. https://doi.org/10.18540/jcecvl3iss8pp1271-1279
Issue
Section
Materials Science and Engineering