CARACTERIZAÇÃO QUÍMICA DO BAGAÇO DE MALTE E AVALIAÇÃO DO SEU POTENCIAL PARA OBTENÇÃO DE PRODUTOS DE VALOR AGREGADO

Autores

DOI:

https://doi.org/10.18540/jcecvl6iss1pp0083-0091

Palavras-chave:

Biomassa lignocelulósica, Proteínas, Biorrefinaria, Produtos químicos

Resumo

O bagaço de malte é o principal resíduo da indústria cervejeira. Frente a isso, surge a necessidade de avaliar diferentes formas de reaproveitamento deste material. O presente estudo teve como objetivos principais caracterizar a biomassa e avaliar as possibilidades para seu reaproveitamento como matéria-prima para produtos de valor agregado. Foram obtidos teores de 29,92% de hemiceluloses, 21,16% de proteínas, 20,80% de lignina total, 15,99% de celulose, 8,33% de extrativos e 3,76% de cinzas no material. A composição química encontrada possibilita diversas aplicações deste resíduo como matéria-prima para obtenção de produtos de maior valor agregado. Estas aplicações estão relacionadas aos altos teores de fibras lignocelulósicas e de proteínas, sendo as principais: produção de etanol de segunda geração, de carvão hidrotérmico, de ácido lático, de HMF e de produtos para nutrição humana.

Downloads

Não há dados estatísticos.

Referências

ALIYU, S.; BALA, M. Brewer’s spent grain: A review of its potentials and applications. African Journal of Biotechnology, v. 10, n. 3, p. 324–331, 2011.

ANDRADE, R. B.; OLIVEIRA, T. C.; KICH, J. N. Determinação de Nitrogênio Total em Leite e derivados Lácteos pelo método de Micro-Kjedahl (MET POA/11/02/01). Laboratório Nacional Agropecuário - LANAGRO/RS, p. 8, 2013.

BARTZ, G. L.; FREITAS, J.; MACHADO, A. Elaboração e caracterização de barras de cereais elaboradas com resíduo sólido de cervejaria. p. 0–4, 2007.

BIOFLEX. Bioflex I: Produção de Biocombustível. Disponível em: <https://bit.ly/2ryydyy>. Acesso em: 10 dez. 2019.

BOYER, L. J. et al. The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass and Bioenergy, v. 3, n. 1, p. 41–48, 1992.

BRUST, L. A. C. et al. Enfermidades em Bovinos Associadas ao Consumo de Resíduos de Cervejaria. Pesquisa Veterinaria Brasileira, v. 35, n. 12, p. 956–964, 2015.

CERVBRASIL. Anuário da cerveja no Brasil - 2016. Disponível em: . Acesso em: 15 set. 2019.

DRAPCHO, C. M.; NHUAN, N. P.; WALKER, T. H. Biofuels Engineering Process Technology. 1. ed. [s.l.] McGraw-Hill, 2008.

GOLDSHMID, O. Lignins: Ocurrence, formation, structure and reactions. In: SARKANEN, K. V.; LUDWIG, C. H. (Eds.). . Lignins: Ocurrence, formation, structure and reactions. New York: Wiley-Interscience, 1971. p. 241–266.

GOMES, J. R. Usina de E2G da Raízen deve atingir capacidade máxima em 2019/20.

GOMIDE, J. L.; DEMUNER, B. J. Determinação do teor de lignina em material lenhoso método klason modificado. O Papel, v. 47, n. January 1986, p. 36–38, 1986.

GONÇALVES, L. C.; BORGES, I.; FERREIRA, P. D. S. Alimentação de Gado de Leite. 1. ed. Belo Horizonte: FEPMVZ, 2009.

GREWAL, J.; KHARE, S. K. One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. Bioresource Technology, v. 251, n. November 2017, p. 268–273, 2018.

HE, Y. et al. Wet fractionation process to produce high protein and high fiber products from brewer’s spent grain. Food and Bioproducts Processing, v. 117, p. 266–274, 2019.

HEO, J. B.; LEE, Y. S.; CHUNG, C. H. Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnology Advances, v. 37, n. 8, p. 107422, 2019.

IRYANI, D. A. et al. Production of 5-hydroxymethyl Furfural from Sugarcane Bagasse under Hot Compressed Water. Procedia Earth and Planetary Science, v. 6, n. May 2014, p. 441–447, 2013.

JIANG, S.; XU, P.; TAO, F. l-Lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue. Bioresource Technology Reports, v. 6, n. January, p. 131–137, 2019.

KHAN, T. A. et al. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. Biomass and Bioenergy, v. 130, n. August, p. 105384, 2019.

KIRIN HOLDINGS COMPANY. Kirin Beer University Report Global Beer Production by Country in 2016. Disponível em: <https://www.kirinholdings.co.jp/english/news/2017/0810_01.html>. Acesso em: 15 set. 2019.

KOMESU, A. et al. Lactic Acid Production to Purification: A Review. BioResources, v. 12, n. 2, p. 4364–4383, 2017.

KUNZE, W. Technology Brewing and Malting. 5. ed. Berlin: VLB Berlin, 2014.

LI, X. et al. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Industrial Crops and Products, v. 130, n. September 2018, p. 184–197, 2019.

LINSKENS, H. F.; JACKSON, J. F. Modern Methods of Plant Analysis: Beer Analysis. 1. ed. Berlin: Springer-Verlag, 1988.

MARCUSSO, E. F.; MÜLLER, C. V. ANUÁRIO DA CERVEJA NO BRASIL 2018: Crescimento e Inovação. Ministério da Agricultura, Pecuária e Abastecimento, n. 72, p. 6, 2019.

MOLINA-CANO, J. L. et al. Relationships between barley hordeins and malting quality in a mutant of cv. Triumph I. Genotype by environment interaction of hordein content. Journal of Cereal Science, v. 34, n. 3, p. 285–294, 2001.

MUSSATTO, S. I. et al. Brewer’s spent grain as raw material for lactic acid production by Lactobacillus delbrueckii. Biotechnology Letters, v. 29, n. 12, p. 1973–1976, 2007.

MUSSATTO, S. I. et al. Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochemical Engineering Journal, v. 40, n. 3, p. 437–444, 2008.

MUSSATTO, S. I.; DRAGONE, G.; ROBERTO, I. C. Brewers’ spent grain: Generation, characteristics and potential applications. Journal of Cereal Science, v. 43, n. 1, p. 1–14, 2006.

MUSSATTO, S. I.; ROBERTO, I. C. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. Journal of Chemical Technology and Biotechnology, v. 81, n. 3, p. 268–274, 2006.

NGUYEN, C. VAN et al. Combined treatments for producing 5-hydroxymethylfurfural (HMF) from lignocellulosic biomass. Catalysis Today, v. 278, p. 344–349, 2016.

OUYANG, J. et al. Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, v. 135, p. 475–480, 2013.

PALMQVIST, E.; HAHN-HÄGERDAL, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, v. 74, n. 1, p. 25–33, 2000.

PARPINELLI, W. Utilização de resíduo seco de cervejaria na alimentação de frangos de corte. Dois Vizinhos: Universidade Tecnológica Federal do Paraná, 2016.

PINHEIRO, T. et al. Intensifying ethanol production from brewer’s spent grain waste: Use of whole slurry at high solid loadings. New Biotechnology, v. 53, n. April 2018, p. 1–8, 2019.

POERSCHMANN, J. et al. Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer’s spent grain. Bioresource Technology, v. 164, p. 162–169, 2014.

POERSCHMANN, J. et al. Organic breakdown products resulting from hydrothermal carbonization of brewer’s spent grain. Chemosphere, v. 131, p. 71–77, 2015.

QIN, F.; JOHANSEN, A. Z.; MUSSATTO, S. I. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Industrial Crops and Products, v. 125, n. June, p. 443–453, 2018.

RAVINDRAN, R. et al. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain. Bioresource Technology, v. 248, p. 272–279, 2018.

REINOLD, M. R. Manual Prático de Cervejaria. 1. ed. São Paulo: ADEN Editora e Comunicações Ltda, 1997.

SGARBIERI, V. C. Proteínas em Alimentos Protéicos: Propriedades, Degradações, Modificações. 1. ed. São Paulo: Livraria Varela, 1996.

SLUITER, A. et al. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP) (NREL / TP-510-42622). National Renewable Energy Laboratory (NREL), p. 8, 2008a.

SLUITER, A. et al. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP) (NREL/TP-510-42619). National Renewable Energy Laboratory (NREL), p. 12, 2008b.

SLUITER, A. et al. Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP) (NREL/TP-510-42618). National Renewable Energy Laboratory (NREL), p. 17, 2012.

STOJCESKA, V. et al. The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. Journal of Cereal Science, v. 47, n. 3, p. 469–479, 2008.

WANG, T.; NOLTE, M. W.; SHANKS, B. H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chemistry, v. 16, n. 2, p. 548–572, 2014.

WEE, Y.; RYU, H. Bioresource Technology Lactic acid production by Lactobacillus sp . RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresource Technology, v. 100, n. 18, p. 4262–4270, 2009.

WILKINSON, S.; SMART, K. A.; COOK, D. J. A comparison of dilute acid- and alkali-catalyzed hydrothermal pretreatments for bioethanol production from brewers’ spent grains. Journal of the American Society of Brewing Chemists, v. 72, n. 2, p. 143–153, 2014.

Downloads

Publicado

2020-02-27

Como Citar

Massardi, M. M., Massini, R. M. M., & Silva, D. de J. (2020). CARACTERIZAÇÃO QUÍMICA DO BAGAÇO DE MALTE E AVALIAÇÃO DO SEU POTENCIAL PARA OBTENÇÃO DE PRODUTOS DE VALOR AGREGADO. The Journal of Engineering and Exact Sciences, 6(1), 0083–0091. https://doi.org/10.18540/jcecvl6iss1pp0083-0091

Edição

Seção

General Articles

Artigos mais lidos pelo mesmo(s) autor(es)