Unsteady Squeezing Flow and Heat Transfer Analysis of Magnetohydrodynamic Third-grade Nanofluid between Two Disks Embedded in a Porous Medium subjected to Thermal Radiation using Homotopy Perturbation Method
DOI:
https://doi.org/10.18540/jcecvl8iss11pp15006-01iKeywords:
Third-grade nanofluid. Squeezing flow. Magnetohydrodynamic. Thermal radiation. Temperature jump boundary conditionsAbstract
The non-linear behaviours of non-Newtonian fluids under various flow conditions continue to arouse research interests in recent times. In this work, nonlinear analysis of unsteady squeezing flow and heat transfer of a third-grade nanofluid between two parallel disks embedded in a porous medium under the influences of thermal radiation and temperature jump boundary conditions is studied using homotopy perturbation method. The parametric studies from the series solutions show that for a suction parameter greater than zero, the lower disc's radial velocity increases while that of the upper disc decreases as a result of a corresponding increase in the viscosity of the fluid from the lower squeezing disc to the upper disc. An increasing magnetic field parameter and the radial velocity of the lower disc decrease while that of the upper disc increases. There is a recorded decrease in the fluid temperature profile as the Prandtl number increases due to a decrease in the third-grade fluid's thermal diffusivity. The results of this work can be used to advance the analysis and study of third-grade nanofluid flow behavior and heat transfer processes.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 The Journal of Engineering and Exact Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.