High-Performance MAPbI3-Based Perovskite Solar Cell: Design, Simulation, and Analysis of Optoelectronic Properties and Efficiency Metrics Using SILVACO TCAD
DOI:
https://doi.org/10.18540/jcecvl10iss10pp21057Keywords:
Perovskite solar cell, MAPbI3, PEDOT: PSS, Silvaco TCAD, PCEAbstract
In this work, a perovskite solar cell (PSC) based on MAPbI3 has been designed, modeled, implemented, investigated and analyzed in Silvaco TCAD environment. A thin layer of MAPbI3 serves as the photoactive absorber. A thinner layer of PEDOT: PSS based organic material acts as the hole transport layer to enhance the hole transport towards the ITO electrode and a thin layer of ZnO based inorganic material serves as the electron transport layer to assist electron transport to the aluminum electrode. Simulations have been carried out to obtain the energy band diagram and the electric field profile as well as the contour and 2D plots of photon absorption rate, the recombination rate and the photogeneration rate to gain a physical insight of electronic and optical behavior of the proposed solar cell. The current-voltage (JV) characteristics and the external quantum efficiency (EQE) of the device are also plotted. The deduced performance metrics of the proposed PSC demonstrates a short circuit current density (JSC) of 27.247 mA/cm2, an open circuit voltage (VOC) of 0.978 V, a fill factor (FF) of 71.80% and a power conversion efficiency (PCE) of 21.25%, where the EQEs with and without considering the whole device absorption is more than 30% and 50% respectively over the visible and infra-red wavelength range.
Downloads
References
Aissat, A., Benyettou, F., & Vilcot, J. P. (2016). Modeling and simulation of InGaN/GaN quantum dots solar cell. AIP Conference Proceedings, 1758, 030014. https://doi.org/10.1063/1.4959410
Aroutiounian, V. M., Petrosyan, S., Khachatryan, A., & Touryan, K. J. (2001). Quantum Dot Solar cells. Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE, 4458, 38–45. https://doi.org/10.1117/12.448264
Ayesha, N., Kulsum, N., Silvi, S. K., & Chowdhury, M. I. B. (2016). Modeling of J-V characteristics of CZTS based thin film solar cells including voltage and space dependent electric field in the absorber layer. In 4th International Conference on the Development in the in Renewable Energy Technology (ICDRET) (pp. 1–4). https://doi.org/10.1109/icdret.2016.7421486
Barnham, K. W. J., & Duggan, G. (1990). A new approach to high-efficiency multi-band-gap solar cells. Journal of Applied Physics, 67(7), 3490–3493. https://doi.org/10.1063/1.345339
Bati, A. S. R., Zhong, Y. L., Burn, P. L., Nazeeruddin, M. K., Shaw, P. E., & Batmunkh, M. (2023). Next-generation applications for integrated perovskite solar cells. Communications Materials, 4(1). https://doi.org/10.1038/s43246-022-00325-4
Benesperi, I., Michaels, H., & Freitag, M. (2018). The researcher’s guide to solid-state dye-sensitized solar cells. Journal of Materials Chemistry C, 6(44), 11903–11942. https://doi.org/10.1039/c8tc03542c
Bi, Z., Zhang, J., Zheng, Q., Lv, L., Lin, Z., Shan, H., Li, P., Ma, X., Han, Y., & Hao, Y. (2016). An InGaN-Based Solar Cell Including Dual InGaN/GaN Multiple Quantum Wells. IEEE Photonics Technology Letters, 28(20), 2117–2120. https://doi.org/10.1109/lpt.2016.2575058
Biswas, P., Hasan, A. S., Rahim, A. B., Ullah, A., & Chowdhury, I. B. (2015). Analytical approach of J-V characteristics of CdTe based thin film solar cells including voltage and space dependent electric field in the absorber layer. 2nd International Conference on Electrical Information and Communication Technologies (EICT), 446–450. https://doi.org/10.1109/eict.2015.7391994
Chakma, N., Dey, G., Huda, N., Asaduzzaman, M., Chowdhury, M. H. D., Chowdhury, M. R. H., Islam, M. J., & Chowdhury, I. B. (2024, October 14). A Silvaco TCAD Approach of Performance Analysis of P3HT-Based Organic Solar Cell. https://matjournals.net/engineering/index.php/JAEED/article/view/1014
Chen, Y., Zhang, M., Li, F., & Yang, Z. (2023). Recent Progress in Perovskite Solar Cells: Status and Future. Coatings, 13(3), 644. https://doi.org/10.3390/coatings13030644
Chowdhury, M. I., Islam, M. J., & Arif, M. I. H. (2020, March 28). Internal Quantum Efficiency of Hydrogenated Amorphous Silicon Based Plasmonic Thin Film Solar Cells Using Photonic Crystal Back Reflectors. https://matjournals.co.in/index.php/JEPSE/article/view/2988
Chowdhury, M. I., & Mostafa, M. J. I. S. (2020, February 24). SILVACO TCAD Implementation of Dual Junction Quantum Well Solar Cell. https://matjournals.co.in/index.php/JOARES/article/view/3683
Chowdhury, M. R. H., Chowdhury, M. H. D., Islam, M. J., & Chowdhury, I. B. (2024, November 21). SILVACO TCAD Based Investigation of P3HT: PCBM-Based Bulk Heterojunction Organic Solar Cell. https://matjournals.net/engineering/index.php/JIIS/article/view/1113
Chowdhury, T. A., Zafar, M. a. B., Islam, M. S., Shahinuzzaman, M., Islam, M. A., & Khandaker, M. U. (2023). Stability of perovskite solar cells: issues and prospects. RSC Advances, 13(3), 1787–1810. https://doi.org/10.1039/d2ra05903g
Chowdhury, W. H., Sara, Z. A., Miah, M. M., Das, M., & Chowdhury, M. I. B. (2021). Efficiency Enhancement of a PCDTBT/PC71 BM-based Organic Solar Cell Through Layer-thickness Optimization. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 684–688. https://doi.org/10.1109/icrest51555.2021.9331006
Guillemoles, J., Kirchartz, T., Cahen, D., & Rau, U. (2019). Guide for the perplexed to the Shockley–Queisser model for solar cells. Nature Photonics, 13(8), 501–505. https://doi.org/10.1038/s41566-019-0479-2
Haque, M. M., Rahman, M. M., & Chowdhury, M. I. B. (2014a). Current-voltage characteristics of CdS/CIGS thin film solar cells: An analytical approach. In 1st International Conference on Non Conventional Energy (ICONCE 2014) (pp. 24–27). https://doi.org/10.1109/iconce.2014.6808695
Haque, M. M., Rahman, M. M., & Chowdhury, M. I. B. (2014b). Current-voltage characteristics of CdS/CdTe thin film solar cells: An analytical approach. 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET), 18, 1–4. https://doi.org/10.1109/icdret.2014.6861729
Hasan, M. M., & Chowdhury, M. I. B. (2018, December 31). Modelling and Analysis of CdS/CZTSSe Based Thin Film Solar Cell. https://xpublication.com/index.php/jmo/article/view/220
Herz, L. M. (2017). Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters, 2(7), 1539–1548. https://doi.org/10.1021/acsenergylett.7b00276
Ho, S., Chowdhury, H. D., MD, Chowdhury, M. R. H., & Chowdhury, M. I. B. (2024). Recent Advances in the Development of Organic Solar Cells and Perovskite Solar Cells. International Journal of Engineering Trends and Technology, 72(9), 139–153. https://doi.org/10.14445/22315381/ijett-v72i9p112
Hossain, M., Ahmed, K., Rubyat, K. M., Chowdhury, M. H. D., Chowdhury, M. R. H., Islam, M., & Chowdhury, M. I. B. (2014). Simulation-Driven Fabrication and Performance Evaluation of n-MOSFET using Silvaco Athena and Atlas: From Process to Parameters. Journal of Microprocessor and Microcontroller Research., 1(3), 21–43. https://doi.org/10.46610/jommr.2024.v01i03.003
Huqe, M. R., Aziz, H. M., Kolince, K. M., Uddin, M. S., & Chowdhury, M. I. B. (2012). Effect of ge-dosing profile of exponentially-doped base on the internal quantum efficiency of a SiGe solar cell. In International Conference on Devices, Circuits and Systems (ICDCS) (pp. 119–123). https://doi.org/10.1109/icdcsyst.2012.6188686
Huqe, M. R., & Chowdhury, M. I. B. (2016). Internal quantum efficiency of Si-drift solar cells with nonuniformly and heavily doped emitter. In 4th International Conference on the Development in the in Renewable Energy Technology (ICDRET). https://doi.org/10.1109/icdret.2016.7421523
Huqe, M. R., Reba, S. ?., Uddin, M. S., & Chowdhury, M. ?. B. (2013, June 1). Analytical Modeling of the Base Dark Saturation Current of Drift-Field Solar Cells Considering Auger Recombination. https://dergipark.org.tr/en/pub/ijrer/issue/16079/168254
Husainat, A., Ali, W., Cofie, P., Attia, J., & Fuller, J. (2019). Simulation and analysis of methylammonium lead iodide (CH3NH3PBI3) perovskite solar cell with AU contact using SCAPS 1D simulator. American Journal of Optics and Photonics, 7(2), 33. https://doi.org/10.11648/j.ajop.20190702.12
Islam, A., & Chowdhury, M. I. B. (2014). A simulink based generalized model of PV cell / array. In 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET) (pp. 1–5). https://doi.org/10.1109/icdret.2014.6861683
Islam, M. J., Chowdhury, M. H. D., Chowdhury, M. R. H., & Chowdhury, I. B. (2024, September 6). Investigation of Improved Performance of ZnO/CIGS-Based Solar Cells. https://matjournals.net/engineering/index.php/JAEED/article/view/911
Islam, M. J., & Chowdhury, M. I. B. (2024, July 29). Investigation of an InGaN Based Quantum Well Solar Cell Using Silvaco TCAD. https://matjournals.net/engineering/index.php/JAEED/article/view/694
Islam, M. J., Hasan, M. M., Sami, R., & Chowdhury, M. I. B. (2016). Modeling of graphene/SiO2/Si(n) based metal-insulator-semiconductor solar cells. In 4th International Conference on the Development in the in Renewable Energy Technology (ICDRET) (pp. 1–4). IEEE. https://doi.org/10.1109/icdret.2016.7421491
Islam, M. J., Mostafa, S., & Chowdhury, M. I. B. (2020). Thickness Optimization of Single Junction Quantum well Solar Cell Using TCAD. International Journal of Engineering and Technologies, 18, 1–7. https://doi.org/10.56431/p-rq2260
Islam, M. N., Chowdhury, M. R. H., Chowdhury, M. H. D., Islam, M. J., Rahaman, M. L., & Chowdhury, M. I. B. (2024). A High-Efficiency Dye-Sensitized Solar Cell Using PCDTBT:PCBM as Solid Electrolyte and Graphene Oxide as Hole Transport Layer. In 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) (pp. 933–938). https://doi.org/10.1109/iceeict62016.2024.10534413
Jeon, N. J., Na, H., Jung, E. H., Yang, T., Lee, Y. G., Kim, G., Shin, H., Seok, S. I., Lee, J., & Seo, J. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3(8), 682–689. https://doi.org/10.1038/s41560-018-0200-6
Johir, M. J. I., Arif, M. I. H., Mostafa, S., Nadeem, M., Hasan, M. M., Habib, K., & Chowdhury, M. I. B. (2021, January 28). Investigation of Quantum Efficiency of GaAs/InAs-Based Quantum Well Solar Cell. https://matjournals.co.in/index.php/JIIS/article/view/2638
Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. (2017). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900. https://doi.org/10.1016/j.rser.2017.09.094
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r
Mostafa, S., Nadeem, M., Arif, M. I. H., Islam, M. J., & Chowdhury, M. I. B. (2020). Performance Optimization of Quantum Well Solar Cells Through Layer Thickness Variation. In 23rd International Conference on Computer and Information Technology (ICCIT) (pp. 1–6). https://doi.org/10.1109/iccit51783.2020.9392741
Murugesan, V. S., Ono, S., Tsuda, N., Yamada, J., Shin, P., & Ochiai, S. (2015). Characterization of Organic Thin Film Solar Cells of PCDTBT?: PC71BM Prepared by Different Mixing Ratio and Effect of Hole Transport Layer. International Journal of Photoenergy, 2015, 1–8. https://doi.org/10.1155/2015/687678
Nabiah, S. N., Islam, M. J., & Chowdhury, M. I. B. (2024, July 10). Silvaco TCAD Implementation of All-InGaN Based Quantum Well Solar Cell. Nabiah | Journal of Advancement in Communication System. http://hbrppublication.com/OJS/index.php/JACS/article/view/5765
Nawaz, S. S., Haque, F. N. N., & Chowdhury, M. I. B. (2023, January 5). Silvaco TCAD Implementation of GaAs/GaSb Quantum Dot Solar Cell. Nawaz | Advancement of Signal Processing and Its Applications. http://hbrppublication.com/OJS/index.php/ASPIA/article/view/2872
Nayak, P. K., Mahesh, S., Snaith, H. J., & Cahen, D. (2019). Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 4(4), 269–285. https://doi.org/10.1038/s41578-019-0097-0
Nikita, K. N., Gaffar, M. A., & Chowdhury, M. I. B. (2016). Exploring the opportunity of using graphene as the transparent conducting layer in CZTS-based thin film solar cells. In 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). https://doi.org/10.1109/ceeict.2016.7873130
Nowsherwan, G. A., Iqbal, M. A., Rehman, S. U., Zaib, A., Sadiq, M. I., Dogar, M. A., Azhar, M., Maidin, S. S., Hussain, S. S., Morsy, K., & Choi, J. R. (2023). Numerical optimization and performance evaluation of ZnPC:PC70BM based dye-sensitized solar cell. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-37486-2
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a0
Park, J., Kim, J., Yun, H., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., & Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616(7958), 724–730. https://doi.org/10.1038/s41586-023-05825-y
Pitaro, M., Tekelenburg, E. K., Shao, S., & Loi, M. A. (2021). Tin Halide Perovskites: From Fundamental Properties to Solar Cells. Advanced Materials, 34(1). https://doi.org/10.1002/adma.202105844
Rahim, A. B., Hasan, A. S., Biswas, P., Ullah, A., & Chowdhury, M. I. B. (2015). Analytical modeling of J-V characteristics of CIGS based thin film solar cell considering voltage and space dependent electric field in the absorber layer. In International Conference on Advances in Electrical Engineering (ICAEE) (pp. 368–371). https://doi.org/10.1109/icaee.2015.7506871
Rahman, S., Haleem, A., Siddiq, M., Hussain, M. K., Qamar, S., Hameed, S., & Waris, M. (2023). Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Advances, 13(28), 19508–19529. https://doi.org/10.1039/d3ra00903c
Reference Air Mass 1.5 Spectra. (n.d.). Grid Modernization | NREL. https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
RefractiveIndex.INFO - Refractive index database. (n.d.). https://refractiveindex.info/
Rivon, S. A., Biswas, P., Hasan, A. S., Rahim, A. B., & Chowdhury, M. I. B. (2016). Analytical modelling of Cds/CdTe based thin film solar cells considering surface recombination. 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 1–5. https://doi.org/10.1109/ceeict.2016.7873135
Saha, N. S. K., Ferdaus, N. S. I., Farhan, N. a. M., Reba, N. S. I., & Chowdhury, N. M. I. B. (2011). Effect of field dependent mobility on the analytical modeling of emitter saturation current of a silicon solar cell. In International Conference on Computer Applications and Industrial Electronics (ICCAIE) (Vol. 20, pp. 7–11). IEEE. https://doi.org/10.1109/iccaie.2011.6162094
Saha, S. K., Farhan, A. M., Reba, S. I., Ferdaus, S. I., & Chowdhury, M. I. B. (2011). An analytical model of dark saturation current of silicon solar cell considering both SRH and Auger recombination. IEEE Regional Symposium on Micro and Nanoelectronics, 9–13. https://doi.org/10.1109/rsm.2011.6088280
Saha, S. K., Ferdaus, S. I., Reba, N. S. I., & Chowdhury, M. I. B. (2011). Effect of field dependent mobility and simultaneous consideration of both SRH and auger recombination on the analytical modeling of internal quantum efficiency of a si-solar cell. In TENCON 2011 - 2011 IEEE Region 10 Conference. IEEE. https://doi.org/10.1109/tencon.2011.6129190
Tebbal, I., & Hamida, A. F. (2023). Effects of Crossover Operators on Genetic Algorithms for the Extraction of Solar Cell Parameters from Noisy Data. Engineering Technology & Applied Science Research, 13(3), 10630–10637. https://doi.org/10.48084/etasr.5417
Wu, J., Cha, H., Du, T., Dong, Y., Xu, W., Lin, C., & Durrant, J. R. (2021). A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. Advanced Materials, 34(2). https://doi.org/10.1002/adma.202101833
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Journal of Engineering and Exact Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.