Qualitative and quantitative analysis of pesticides identified in surface and groundwater in the western region of Algeria

Authors

  • Nadia Berkok Laboratory of science, technology and process engineering (LSTGP), University of Sciences and Technology of Oran, Mohamed Boudiaf, BP 1505 El M’Naouer, 31000, Oran, Algeria
  • Mohammed Hadjel Laboratory of science, technology and process engineering (LSTGP), University of Sciences and Technology of Oran, Mohamed Boudiaf, BP 1505 El M’Naouer, 31000, Oran, Algeria.
  • Omar Bentata Laboratory of science, technology and process engineering (LSTGP), University of Sciences and Technology of Oran, Mohamed Boudiaf, BP 1505 El M’Naouer, 31000, Oran, Algeria.

DOI:

https://doi.org/10.18540/jcecvl10iss10pp21120

Keywords:

Pollution, Pesticide, Micropollutant, Tafna catchment

Abstract

In this study, we are looking into the number of pesticides in a river for the West Tafna Watershed. Since it may be very difficult to detect pesticides in water, a sampling attempt was made at a number of control locations around the research region during the course of a two-year observation. Efforts are being made to identify and quantify pesticides like organochlorine, nitrogen, and phosphorous. Several techniques for extraction, purification, detection, and quantification were used after sampling. Liquid extraction method was used to remove pesticides from water. The samples and various pesticide standards were previously selected in accordance with the results desired: Mix A is made up of sixteen pesticides, while Mix B and Mix 1 are each made up of seven pesticides that are used for external calibration. Results showed that the content of many pesticides, including methylparathion (89.01 µg/L), azinophosphate-methyl (56.66 µg/L), O-ethyl phenylthiophosphazene (195.98 µg/L), and O-4-nitro phenyl (NHB), is much higher than the current limitations of 1.0 µg/L for surface water. The same chemicals are present in groundwater at excessive numbers that include: EPN 209.54 µg/L, Azinophosphate-methyl 183.01 µg/L, 2,4,5-T methyl ester 149.13 µg/L, Dichlorvos 143.43 µg/L, Thiophosphate of O,O-dimethyl and O-2,4,5-trichlorophenol (Ronnel) 57.18 µg/L, Diazinon 55.37 µg/L and Parathion 52.61 µg/L.

Downloads

References

Appannagari, R. R. (2017). Environmental pollution causes and consequences: a study. North Asian International Research Journal of Social Science & Humanities, 3(8), 151-161.

BABA-HAMED, K. (2001). Contribution à l'étude hydrologique de trois sous-bassins de la Tafna (bassin de Sebdou, de Mouilah et d'Isser). Mémoire de Magistère, Univ. Oran, Algérie, 195p. https://doi.org/10.1111/j.1365-3091.1977.tb00131.x

Bertomeu-Sánchez, J. R. (2019). Introduction. Pesticides: past and present. HoST-Journal of History of Science and Technology, 13(1), 1-27. https://10.2478/host-2019-0001

Carazo-Rojas, E., Pérez-Rojas, G., Pérez-Villanueva, M., Chinchilla-Soto, C., Chin-Pampillo, J. S., Aguilar-Mora, P., & Vryzas, Z. (2018). Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environmental Pollution, 241, 800-809. https://doi.org/10.1016/j.envpol.2018.06.020

Colin, F. (2000). Approche spatiale de la pollution chronique des eaux de surface par les produits phytosanitaires. Cas de l'atrazine dans le bassin versant du Sousson (Gers, France) (Doctoral dissertation, Doctorat Sciences de l'Eau, ENGREF Montpellier). https://hal.inrae.fr/tel-02580074

Cooper, C. M. (1993). Biological effects of agriculturally derived surface water pollutants on aquatic systems—a review. Journal of Environmental Quality, 22(3), 402-408. https://doi.org/10.2134/jeq1993.00472425002200030003x

Delmotte, M., & Jullien, H. (1987, July). Variations des caractéristiques diélectriques des résines époxydes au cours de leur réticulation sous microondes. Makromolekulare Chemie. Macromolecular Symposia, 9(1), 185-191. https://doi.org/10.1002/masy.19870090120

Derache, R. (1986). Toxicologie et sécurité des aliments. Paris, APRIA.

González-Rodríguez, R. M., Rial-Otero, R., Cancho-Grande, B., Gonzalez-Barreiro, C., & Simal-Gándara, J. (2011). A review on the fate of pesticides during the processes within the food-production chain. Critical Reviews in Food Science and Nutrition, 51(2), 99-114. https://doi.org/10.1080/10408390903432625

Handford, C. E., Elliott, C. T., & Campbell, K. (2015). A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integrated Environmental Assessment and Management, 11(4), 525-536. https://doi.org/10.1002/ieam.1635

Ho, L. T., & Goethals, P. L. M. (2019). Opportunities and challenges for the sustainability of lakes and reservoirs in relation to the Sustainable Development Goals (SDGs). Water, 11(7), 1462. https://doi.org/10.3390/w11071462

Jean Rodier. (1996). Analyse de l’eau. Édition Dunod.

Kubiak-Hardiman, P., Haughey, S. A., Meneely, J., Miller, S., Banerjee, K., & Elliott, C. T. (2023). Identifying gaps and challenges in global pesticide legislation that impact the protection of consumer health: Rice as a case study. Exposure and Health, 15(3), 597-618. https://doi.org/10.1007/s12403-022-00508-x

Liu, J., Zhou, J. H., Guo, Q. N., Ma, L. Y., & Yang, H. (2021). Physiochemical assessment of environmental behaviors of herbicide atrazine in soils associated with its degradation and bioavailability to weeds. Chemosphere, 262, 127830. https://doi.org/10.1016/j.chemosphere.2020.127830

Molnar-Irimie, A., Ranta, O., Stanil?, S., Marian, O., & Ghe?e, A. (2024). Research on Methods to Reduce Water Pollution Due to Phytosanitary Treatments. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Agriculture, 81(2). https://10.15835/buasvmcn-agr:2024.0008

Navarro, S., Vela, N., & Navarro, G. (2013). Review. An overview on the environmental behaviour of pesticide residues in soils. Spanish Journal of Agricultural Research, 5(3), 357-375. https://doi.org/10.5424/sjar/2007053-5344

Omran, E. S. E., & Negm, A. (2020). Impacts of pesticides on soil and water resources in Algeria. Water Resources in Algeria-Part I: Assessment of Surface and Groundwater Resources, 69-91. https://doi.org/10.1007/698_2020_468

Rubirola, A., Boleda, M. R., Galceran, M. T., & Moyano, E. (2019). Formation of new disinfection by-products of priority substances (Directive 2013/39/UE and Watch List) in drinking water treatment. Environmental Science and Pollution Research, 26(27), 28270-28283. https://doi.org/10.1007/s11356-019-06018-9

Schilling, K. E. (2009). Investigating local variation in groundwater recharge along a topographic gradient, Walnut Creek, Iowa, USA. Hydrogeology Journal, 17(2), 397. https://doi.org/10.1007/s10040-008-0347-5

Schriever, C. A., von der Ohe, P. C., & Liess, M. (2007). Estimating pesticide runoff in small streams. Chemosphere, 68(11), 2161-2171. https://doi.org/10.1016/j.chemosphere.2007.01.086

Soudani, N., Toumi, K., & Boukhalfa, H. H. (2022). Estimation of phytosanitary pressure and the environmental impact related to the use of pesticides. Egyptian Journal of Agricultural Research, 100(2), 184-192. https://10.21608/ejar.2022.98149.1157

Srivastava, A. K., & Kesavachandran, C. (2019). Health effects of pesticides. CRC Press.

Tidjani, A. E. B., Yebdri, D., Roth, J. C., & Derriche, Z. (2006). Exploration des séries chronologiques d’analyse de la qualité des eaux de surface dans le bassin de la Tafna (Algérie). Revue des Sciences de l'Eau, 19(4), 315-324. https://doi.org/10.7202/014418ar

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112

Zettam, A., Taleb, A., Sauvage, S., Boithias, L., Belaidi, N., & Sánchez-Pérez, J. M. (2017). Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: The case of the Tafna river (northwest Algeria). Water, 9(3), 216. https://doi.org/10.3390/w9030216

Zettam, A., Taleb, A., Sauvage, S., Boithias, L., Belaidi, N., & Sánchez-Pérez, J. M. (2020). Applications of a SWAT model to evaluate the contribution of the Tafna catchment (north-west Africa) to the nitrate load entering the Mediterranean Sea. Environmental Monitoring and Assessment, 192, 1-17. https://doi.org/10.1007/s10661-020-08482-0

Downloads

Published

2024-12-27

How to Cite

Berkok, N., Hadjel, M., & Bentata, O. (2024). Qualitative and quantitative analysis of pesticides identified in surface and groundwater in the western region of Algeria. The Journal of Engineering and Exact Sciences, 10(10), 21120. https://doi.org/10.18540/jcecvl10iss10pp21120

Issue

Section

General Articles