STUDY OF THE MINERALIZATION OF THE WASTE FROM ANATOMY LABORATORIES OF THE UNDERGRADUATION COURSES OF THE FEDERAL UNIVERSITY OF JEQUITINHONHA AND MUCURI VALLEYS
DOI:
https://doi.org/10.18540/jcecvl5iss1pp0013-0019Keywords:
Formalin degradation, Advanced oxidation processes, Chemical kinetic, Formaldehyde.Abstract
In spite of it is a dangerous substance already defined as carcinogenic, formaldehyde even widely used in industry and in the academic environment, in Brazil, it still does not present a regulation that delimits what can be considered a safe disposal. Based on the literature, it was defined that 1.61 mg L-1 of formaldehyde represents a safe concentration to be lead to sewage. The proposal of this study is to establish a complete oxidation model of this residue, followed by its simulation using different types of reactor models. The entire process was structured to satisfy the demands from the human and animal anatomy laboratories, both present at Federal University of Jequitinhonha and Mucuri Valleys, in the city of Diamantina, MG. The corpses and carcass washing process implanted provides the effluent which will be treated. The reaction model has three stages, the first follows zero-order kinetics and the other two follow a pseudo-first order kinetic, their specific reaction rates were 0.0457 mol L-1 min-1, 0.0702 min-1 and 0.0144 min-1, respectively. A 150 L BSTR presented satisfactory operation, with a batch time of 7 minutes to achieve a safe disposal. Further tests with the real effluent ought to be implemented in order to compare with the results from the synthetic effluent.Downloads
Download data is not yet available.
References
CHRISTOSKOVA, S.; STOYANOVA, M. Catalytic degradation of CH2O and C6H5CH2OH in wastewater. Water Research, v. 36, n. 9, p. 2297-2303, 2002.
CHU, L.; WANG, J.; DONG, J.; LIU, H.; SUN, X. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere, v. 86, n. 4, p. 409-414, 2012.
CONAMA. Resolução No 357, 2005. Available at: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed on November 16th, 2017.
ESPLUGAS, S.; GIMÉNEZ, J.; CONTRERAS, S.; PASCUAL, E.; RODRÍGUEZ, M. Comparison of different advanced oxidation processes for phenol degradation. Water Research, v. 36, n. 4, p. 1034-1042, 2002.
FENTON, H. J. H. LXXIII. – Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, The Royal Society of Chemistry, v. 65, p. 899-910, 1894.
FRANZ, A. W.; KRINEMAYER, H.; PFEIFFER, D.; PILZ, R. D.; REUSS, G.; DISTELDORF, W.; GAMER, A. O.; HILT, A. Formaldehyde. In:_____. Ullmann’s Encyclopedia of Industrial Chemistry. American Cancer Society, 2016. p. 1-34.
GRAFSTROM, R. C.; CURREN, R. D.; YANG, L. L.; HARRIS, C. C. Genotoxicity of formaldehyde in cultured human bronchial fibroblasts. Science, American Association for the Advancement of Science, v. 228, n. 4695, p. 89-91, 1985.
GUIMARÃES, J. R.; FARAH, C. R. T.; MANIERO, M. G.; FADINI, P. S. Degradation of formaldehyde by advanced oxidation processes. Journal of Environmental Management, v. 107, p. 96-101, 2012.
HOHREITER, D. W.; RIGG, D. K. Derivation of ambient water quality criteria for formaldehyde. Chemosphere, v. 45, n. 4, p. 471-486, 2001.
IARC. Chemical agents related occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, v. 100F, p. 1-599, 2012.
IARC. Formaldehyde, 2-butoxyethanol and 1-tertbutoxypropan-2-ol. IARC Monographs on the Evaluation of Carcinogenic Risks to Human, v. 88, p. 1-478, 2006.
KAJITVICHYANUKUL, P.; LU, M.; JAMROENSAN, A. Formaldehyde degradation in the presence of methanol by photo-Fenton process. Journal of Environmental Management, v. 86, n. 3, p. 545-553, 2008.
KAJITVICHYANUKUL, P.; LU, M.; LIAO, C.; WIROJANAGUD, W.; KOOTTATEP, T. Degradation and detoxification of formaline wastewater by advanced oxidation processes. Journal of Hazardous Materials, v. 135, n. 1, p. 337-343, 2006.
LEGRINI, O.; OLIVEROS, E.; BRAUN, A. M. Photochemical processes for water treatment. Chemical Reviews, v. 93, n. 2, p. 671-698, 1993.
LIN, S. H.; LIN, C. M.; LEU, H. G. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Research, v. 33, n. 7, p. 1735-1741, 1999.
LIU, X.; LIANG, J.; WANG, X. Kinetics and reaction pathways of formaldehyde degradation using UV-Fenton method. Water Environment Research, v. 83, n. 5, 2011.
MARTINDALE, W. The Extra Pharmacopoeia, 30th ed., Londres: Pharmaceutical Press, 1993.
MORAVIA, W. G.; LANGE, L. C.; AMARAL, M. C. S. Avaliação de processo oxidativo avançado pelo reagente de Fenton em condições otimizadas no tratamento de lixiviado de aterro sanitário com ênfase em parâmetros coletivos e caracterização do lodo gerado. Química Nova, v. 34, n. 8, p. 1370-1377, 2011.
NCITHESAURUS. Formaldehyde, 2018. Available at: https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=NCI_Thesaurus&code=C29744. Accessed on April 16th, 2018.
NETTO, A; FERNANDEZ, M. F.; ARAÚJO, R.; ITO, A. E. Manual de hidráulica. 8th ed., São Paulo: Edgard Blücher Ltda, 1998.
NEYENS, E.; BAEYENS, J. A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal Hazardous Materials, v. B98, p. 33-50, 2003.
OLIVEIRA, S. V. W. B.; ZAIAT, M. Gerenciamento de solução de formol em laboratórios de anatomia. Revista Brasileira de Ciências Ambientais, n. 1, p. 18-25, 2005.
PÉREZ-MOYA, M.; GRAELLS, M.; BUENESTADO, P.; MANSILLA, H. A comparative study on the empirical modelling of photo-Fenton treatment process performance. Applied Catalysis B: Environmental, v. 84, n. 1, p. 313-323, 2008.
PIGNATELLO, J. J. Dark and photoassisted Fe3+ catalysed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science & Technology, v. 26, n. 5, p. 944-951, 1992.
RUPPERT, G.; BAUER, R.; HEISLER, G. UV-O3, UV-H2O2, UV-TiO2 and the photo-Fenton reaction – comparison of advanced oxidation processes for wastewater treatment. Chemosphere, v. 28, n. 8, p. 1447-1454, 1994.
SAFARZADEH-AMIRI, A.; BOLTON, J. R.; CATER, S. R. A comparative study on the empirical modeling of photo-Fenton treatment process performance. Applied Catalysis B: Environmental, v. 1, n. 1, p. 18-26, 1996.
TEIXEIRA, C. P. A. B.; JARDIM, W. F. Processos oxidativos avançados: conceitos teóricos, Caderno Temático, v. 3, Laboratório de Química Ambiental – LQA, Instituto de Química – UNICAMP, Campinas – SP, 2004.
TIŠLER, T.; ZAGORC-KON?AN, J. Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organisms. Water, Air and Soil Pollution, v. 97, n. 3, p. 315-322, 1997.
UTSET, B.; GARCIA, J.; CASADO, J.; DOMÈNECH, X.; PERAL, J. Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions. Chemosphere, v. 41, n. 8, p. 1187-1192, 2000.
WALLING, C.; KATO, S. Oxidation of alcohols by Fenton’s reagent. Effect of copper ion. Journal of the American Chemical Society, v. 93, n. 17, p. 4275-4281, 1971.
YANG, T.; HUO, Y.; RUI, Z.; JI, H. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/?-Al2O3 with a low Pt content. Applied Catalysis B: Environmental, v. 200, p. 543-551, 2017.
YUAN, D.; TIAN, L.; GU, D.; SHEN, X.; ZHU, L.; WU, H.; WANG, B. Fast and efficient oxidation of formaldehyde in wastewater via the solar thermal electrochemical process tuned by thermoelectrochemistry. Journal of Cleaner Production, v. 156, p. 310-316, 2017.
YUMURA, T.; AMENOMORI, T.; KAGAWA, Y.; YOSHIZAWA, K. Mechanism for the formaldehyde to formic acid and formic acid to carbon dioxide conversions mediated by an iron-oxo species. The Journal of Physical Chemistry A, v. 106, n. 4, p. 621-630, 2002.
CHU, L.; WANG, J.; DONG, J.; LIU, H.; SUN, X. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere, v. 86, n. 4, p. 409-414, 2012.
CONAMA. Resolução No 357, 2005. Available at: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed on November 16th, 2017.
ESPLUGAS, S.; GIMÉNEZ, J.; CONTRERAS, S.; PASCUAL, E.; RODRÍGUEZ, M. Comparison of different advanced oxidation processes for phenol degradation. Water Research, v. 36, n. 4, p. 1034-1042, 2002.
FENTON, H. J. H. LXXIII. – Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, The Royal Society of Chemistry, v. 65, p. 899-910, 1894.
FRANZ, A. W.; KRINEMAYER, H.; PFEIFFER, D.; PILZ, R. D.; REUSS, G.; DISTELDORF, W.; GAMER, A. O.; HILT, A. Formaldehyde. In:_____. Ullmann’s Encyclopedia of Industrial Chemistry. American Cancer Society, 2016. p. 1-34.
GRAFSTROM, R. C.; CURREN, R. D.; YANG, L. L.; HARRIS, C. C. Genotoxicity of formaldehyde in cultured human bronchial fibroblasts. Science, American Association for the Advancement of Science, v. 228, n. 4695, p. 89-91, 1985.
GUIMARÃES, J. R.; FARAH, C. R. T.; MANIERO, M. G.; FADINI, P. S. Degradation of formaldehyde by advanced oxidation processes. Journal of Environmental Management, v. 107, p. 96-101, 2012.
HOHREITER, D. W.; RIGG, D. K. Derivation of ambient water quality criteria for formaldehyde. Chemosphere, v. 45, n. 4, p. 471-486, 2001.
IARC. Chemical agents related occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, v. 100F, p. 1-599, 2012.
IARC. Formaldehyde, 2-butoxyethanol and 1-tertbutoxypropan-2-ol. IARC Monographs on the Evaluation of Carcinogenic Risks to Human, v. 88, p. 1-478, 2006.
KAJITVICHYANUKUL, P.; LU, M.; JAMROENSAN, A. Formaldehyde degradation in the presence of methanol by photo-Fenton process. Journal of Environmental Management, v. 86, n. 3, p. 545-553, 2008.
KAJITVICHYANUKUL, P.; LU, M.; LIAO, C.; WIROJANAGUD, W.; KOOTTATEP, T. Degradation and detoxification of formaline wastewater by advanced oxidation processes. Journal of Hazardous Materials, v. 135, n. 1, p. 337-343, 2006.
LEGRINI, O.; OLIVEROS, E.; BRAUN, A. M. Photochemical processes for water treatment. Chemical Reviews, v. 93, n. 2, p. 671-698, 1993.
LIN, S. H.; LIN, C. M.; LEU, H. G. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Research, v. 33, n. 7, p. 1735-1741, 1999.
LIU, X.; LIANG, J.; WANG, X. Kinetics and reaction pathways of formaldehyde degradation using UV-Fenton method. Water Environment Research, v. 83, n. 5, 2011.
MARTINDALE, W. The Extra Pharmacopoeia, 30th ed., Londres: Pharmaceutical Press, 1993.
MORAVIA, W. G.; LANGE, L. C.; AMARAL, M. C. S. Avaliação de processo oxidativo avançado pelo reagente de Fenton em condições otimizadas no tratamento de lixiviado de aterro sanitário com ênfase em parâmetros coletivos e caracterização do lodo gerado. Química Nova, v. 34, n. 8, p. 1370-1377, 2011.
NCITHESAURUS. Formaldehyde, 2018. Available at: https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=NCI_Thesaurus&code=C29744. Accessed on April 16th, 2018.
NETTO, A; FERNANDEZ, M. F.; ARAÚJO, R.; ITO, A. E. Manual de hidráulica. 8th ed., São Paulo: Edgard Blücher Ltda, 1998.
NEYENS, E.; BAEYENS, J. A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal Hazardous Materials, v. B98, p. 33-50, 2003.
OLIVEIRA, S. V. W. B.; ZAIAT, M. Gerenciamento de solução de formol em laboratórios de anatomia. Revista Brasileira de Ciências Ambientais, n. 1, p. 18-25, 2005.
PÉREZ-MOYA, M.; GRAELLS, M.; BUENESTADO, P.; MANSILLA, H. A comparative study on the empirical modelling of photo-Fenton treatment process performance. Applied Catalysis B: Environmental, v. 84, n. 1, p. 313-323, 2008.
PIGNATELLO, J. J. Dark and photoassisted Fe3+ catalysed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science & Technology, v. 26, n. 5, p. 944-951, 1992.
RUPPERT, G.; BAUER, R.; HEISLER, G. UV-O3, UV-H2O2, UV-TiO2 and the photo-Fenton reaction – comparison of advanced oxidation processes for wastewater treatment. Chemosphere, v. 28, n. 8, p. 1447-1454, 1994.
SAFARZADEH-AMIRI, A.; BOLTON, J. R.; CATER, S. R. A comparative study on the empirical modeling of photo-Fenton treatment process performance. Applied Catalysis B: Environmental, v. 1, n. 1, p. 18-26, 1996.
TEIXEIRA, C. P. A. B.; JARDIM, W. F. Processos oxidativos avançados: conceitos teóricos, Caderno Temático, v. 3, Laboratório de Química Ambiental – LQA, Instituto de Química – UNICAMP, Campinas – SP, 2004.
TIŠLER, T.; ZAGORC-KON?AN, J. Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organisms. Water, Air and Soil Pollution, v. 97, n. 3, p. 315-322, 1997.
UTSET, B.; GARCIA, J.; CASADO, J.; DOMÈNECH, X.; PERAL, J. Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions. Chemosphere, v. 41, n. 8, p. 1187-1192, 2000.
WALLING, C.; KATO, S. Oxidation of alcohols by Fenton’s reagent. Effect of copper ion. Journal of the American Chemical Society, v. 93, n. 17, p. 4275-4281, 1971.
YANG, T.; HUO, Y.; RUI, Z.; JI, H. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/?-Al2O3 with a low Pt content. Applied Catalysis B: Environmental, v. 200, p. 543-551, 2017.
YUAN, D.; TIAN, L.; GU, D.; SHEN, X.; ZHU, L.; WU, H.; WANG, B. Fast and efficient oxidation of formaldehyde in wastewater via the solar thermal electrochemical process tuned by thermoelectrochemistry. Journal of Cleaner Production, v. 156, p. 310-316, 2017.
YUMURA, T.; AMENOMORI, T.; KAGAWA, Y.; YOSHIZAWA, K. Mechanism for the formaldehyde to formic acid and formic acid to carbon dioxide conversions mediated by an iron-oxo species. The Journal of Physical Chemistry A, v. 106, n. 4, p. 621-630, 2002.
Downloads
Published
2019-03-08
How to Cite
de Sousa, J. A., & Corrêa de Souza, M. (2019). STUDY OF THE MINERALIZATION OF THE WASTE FROM ANATOMY LABORATORIES OF THE UNDERGRADUATION COURSES OF THE FEDERAL UNIVERSITY OF JEQUITINHONHA AND MUCURI VALLEYS. The Journal of Engineering and Exact Sciences, 5(1), 0013–0019. https://doi.org/10.18540/jcecvl5iss1pp0013-0019
Issue
Section
Engineering Education and Science Education