ESTUDO NUMÉRICO E ANALÍTICO DE UM ENSAIO DE FRATURAMENTO HIDRÁULICO
DOI:
https://doi.org/10.18540/jcecvl5iss2pp0189-0194Keywords:
Fraturamento hidráulico, Elasticidade, Elementos finitos, Mecânica da fraturaAbstract
Os resultados de um ensaio de fraturamento hidráulico de laboratório são analisados por modelos da elasticidade e da mecânica da fratura. Uma solução analítica para uma abertura circular em meio infinito com tensões in situ não hidrostáticas, uma carga interna e um modelo de elementos finitos do ensaio apresentam tensões de tração máximas que superam a resistência à tração do material. Estes dois modelos explicam a iniciação da fratura. Soluções de referência de mecânica da fratura e modelos de elementos finitos para representar o fraturamento no ensaio, quando comparados com tenacidade à fratura, explicam o processo de propagação da fratura. O conjunto dos modelos permite um melhor entendimento do processo da mecânica do fraturamento. As tensões in situ, a pressão interna do furo e a pressão na fratura possuem papeis distintos no referido processo.Downloads
Download data is not yet available.
References
BACKERS, T. Fracture toughness determination and micromechanics of rock under mode I and mode II loading. 2004. 94 f. Thesis (PhD in Geology) - University of Potsdam, Germany, 2004.
BRADLEY, W. B. Failure of inclined boreholes. Journal of Energy Resources Technology, v. 101, n. 4, p. 232-239, 1979.
CIMNE. GiD: The personal pre and post processor. 2017. Available at: <www.gidhome.com>. Accessed on November 29th, 2017.
FJÆR, E.; HOLT, R.M.; HORSRUD, P.; RAAEN, A.M. & RISNES, R. Petroleum Related Rock Mechanics. 2nd ed., Amsterdam: Elsevier, 2008.
HAIMSON, B.; FAIRHURST, C. Ln-situ stress determination at great depth by means of hydraulic fracturing. In: 11th US SYMPOSIUM ON ROCK MECHANICS, 16-19 June 1969, Berkeley, California. Proceedings… New York: AIME, 1970, p. 559-584.
HAIMSON, B. Hydraulic fracturing in porous and nonporous rock and its potential for determining in-situ stresses at great depth. 1968. 234 f. Thesis (PhD in Geology), University of Minnesota, United States of America, 1968.
LAZARUS AND FREE PASCAL TEAM. Lazarus. 2014. Available at: <http://www.lazarus.freepascal.org/>. Accessed on March 13th, 2014.
SAMMIS, C. G.; ASHBY, M. F. The failure of brittle porous solids under compressive stress states. Acta metallurgica, v. 34, n. 3, p. 511-526, 1986.
TADA, H.; PARIS, P.C.; IRWIN, G.R. The stress analysis of cracks handbook. 3rd ed. New York: ASME Press, 2000.
WAWRZYNEK, P.; INGRAFFEA, A. FRANC2D: A two dimensional crack propagation simulator. 1993. User's Guide. Version 3.1. Available at: <http://www.cfg.cornell.edu/doc/F2D_V3.1.pdf>. Accessed on February 3rd, 2014.
ZHAO, H.; LI, Z.; ZHU, C.; RU, Z. Reliability analysis models for hydraulic fracturing. Journal of Petroleum Science and Engineering, v. 162, p. 150-157, 2018.
NARDELLI, A. M. B.; GRIFFITH, J. J. Theoretical model for understanding corporate environmentalism in the Brazilian forestry sector. Revista Árvore, v. 27, n. 6, p. 855-869, 2003.
BRADLEY, W. B. Failure of inclined boreholes. Journal of Energy Resources Technology, v. 101, n. 4, p. 232-239, 1979.
CIMNE. GiD: The personal pre and post processor. 2017. Available at: <www.gidhome.com>. Accessed on November 29th, 2017.
FJÆR, E.; HOLT, R.M.; HORSRUD, P.; RAAEN, A.M. & RISNES, R. Petroleum Related Rock Mechanics. 2nd ed., Amsterdam: Elsevier, 2008.
HAIMSON, B.; FAIRHURST, C. Ln-situ stress determination at great depth by means of hydraulic fracturing. In: 11th US SYMPOSIUM ON ROCK MECHANICS, 16-19 June 1969, Berkeley, California. Proceedings… New York: AIME, 1970, p. 559-584.
HAIMSON, B. Hydraulic fracturing in porous and nonporous rock and its potential for determining in-situ stresses at great depth. 1968. 234 f. Thesis (PhD in Geology), University of Minnesota, United States of America, 1968.
LAZARUS AND FREE PASCAL TEAM. Lazarus. 2014. Available at: <http://www.lazarus.freepascal.org/>. Accessed on March 13th, 2014.
SAMMIS, C. G.; ASHBY, M. F. The failure of brittle porous solids under compressive stress states. Acta metallurgica, v. 34, n. 3, p. 511-526, 1986.
TADA, H.; PARIS, P.C.; IRWIN, G.R. The stress analysis of cracks handbook. 3rd ed. New York: ASME Press, 2000.
WAWRZYNEK, P.; INGRAFFEA, A. FRANC2D: A two dimensional crack propagation simulator. 1993. User's Guide. Version 3.1. Available at: <http://www.cfg.cornell.edu/doc/F2D_V3.1.pdf>. Accessed on February 3rd, 2014.
ZHAO, H.; LI, Z.; ZHU, C.; RU, Z. Reliability analysis models for hydraulic fracturing. Journal of Petroleum Science and Engineering, v. 162, p. 150-157, 2018.
NARDELLI, A. M. B.; GRIFFITH, J. J. Theoretical model for understanding corporate environmentalism in the Brazilian forestry sector. Revista Árvore, v. 27, n. 6, p. 855-869, 2003.
Downloads
Published
2019-04-26
How to Cite
Simonelli, G., Silva, L. S. e, Vilares Filho, R. S., & Lins, P. G. C. (2019). ESTUDO NUMÉRICO E ANALÍTICO DE UM ENSAIO DE FRATURAMENTO HIDRÁULICO. The Journal of Engineering and Exact Sciences, 5(2), 0189–0194. https://doi.org/10.18540/jcecvl5iss2pp0189-0194
Issue
Section
Engineering of Petroleum, Natural Gas and Biofuels