EFEITO DAS CONDIÇÕES DE ANODIZAÇÃO EM Ti6Al4V NAS CARACTERÍSTICAS DO ÓXIDO FORMADO
DOI:
https://doi.org/10.18540/jcecvl5iss5pp0494-0500Keywords:
dióxido de titânio, anodização, Ti6Al4V, implantes, difração de raios-XAbstract
Um dos grandes desafios na área de biomateriais é desenvolver implantes que consigam aliar biocompatibilidade e resistência à corrosão. Ligas de titânio vêm sendo largamente aplicadas com essa finalidade, uma vez que apresentam tais características, além de exibirem maior resistência mecânica e melhor custo-benefício frente ao titânio puro. Sob essa perspectiva, este trabalho estudou as condições do processo de anodização da liga Ti6Al4V. A caracterização do óxido formado foi realizada por microscopia eletrônica de varredura (MEV) acoplado a uma sonda de espectroscopia dispersiva em energia (EDS) e difração de raios-X (DRX). Os resultados indicam que apenas o H2SO4 favoreceu a formação de filmes cristalinos, contudo, em H3PO4, os filmes são enriquecidos com fósforo.
Downloads
References
ALBU, S. P. et al. Adv. Mater., v. 20, p. 4135, 2008.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM F136. Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), 2013.
BOEHLERT, C. et al. Mat Sci Eng C, v. 25, p. 247-252, 2005.
CHEN, J. et al. Assessing the tribocorrosion performance of Ti–6Al–4V, 316 stainless steel and Monel K500 alloys in artificial seawater. Materials and Corrosion, v. 62, p. 394-401, 2013.
CHEONG, Y. L. et al. Room-temperature synthesis of nanocrystalline titanium dioxide via electrochemical anodization. Materials Science in Semiconductor Processing, v. 26, p. 130-136, 2014.
CUI, X. et al. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent. Mater., v. 25, p. 80-86, 2009.
DALMIGLIO, M. et al. Journal Biomed. Materials, v. 86B, p. 407, 2008.
DIAMANTI, M. V.; PEDEFERRI, M. P. Effect of anodic oxidation parameters on the titanium oxides formation. Corrosion Science, v. 49, p. 939-948, 2007.
DIAMANTI, M. V. et al. Interference colors of thin oxide layers on titanium. Color Research and Application, v. 33, p. 221-228, 2008.
DIAMANTI, M. V. et al. Anodic oxidation of titanium: from technical aspects to biomedical applications. Journal of Applied Biomaterials Biomechanics, v. 9, p. 55-69, 2011.
DIAMANTI, M. V. et al. Anodic coloring of titanium and its alloy for jewels production. Color Research and Application, v. 37, p. 384-390, 2012.
DIAMANTI, M. V. et al. Decoupling the dual source of colour alteration of architectural titanium: soiling or oxidation? Corrosion Science, v. 72, p. 125-132, 2013.
DIAMANTI, M. V. et al. Production of anodic TiO2 nanofilms and their characterization. Physics Procedia, v. 40, p. 30-37, 2013.
DURDU, S. et al. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation. J. Alloys Compd., v. 551, p. 422-429, 2013.
FAN, X. et al. Preparation of bioactive TiO2 film on porous titanium by micro-arc oxidation. Applied Surface Science, v. 258, p. 7584-7588, 2012.
FAZEL, M. et al. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Applied Surface Science, v. 324, p. 751-756, 2015.
GARSIVAZ JAZI, M. R. et al. Surface characteristics and electrochemical impedance investigation of spark-anodized Ti6Al4V alloy. Journal of Materials Engineering Performance, v. 23, p. 1270-1278, 2014.
GEETHA, M. et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progressin Materials Science, v. 54, p. 397-425, 2009.
GIORDANO, C. et al. Electrochemically induced anatase inhibits bacterial colonization on Titanium Grade 2 and Ti6Al4V alloy for dental and orthopedic devices. Colloids and Surfaces B: Biointerfaces, v. 88, p. 648-655, 2011.
HABAZAKI, H. et al. Crystallization of anodic titania on titanium and its alloys. Corrosion Science, v. 45, p. 2063-2073, 2003.
HANSON, B. A Selection and use of titanium. London: The Institute of Materials, 1995.
HUANG, P. et al. Mater. Lett., v. 59, p. 185, 2005.
KUMAR, S. et al. Surface modification of CP-Ti to improve the fretting-corrosion resistance: thermal oxidation vs. anodizing. Materials Science and Engineering, v. 30, p. 921-927, 2010.
KYUNG-JUN, H. et al. Adsorption and photocatalysis of nanocrystalline TiO2 particles prepared by sol–gel method for methylene blue degradation. Advanced Powder Technology, v. 23, p. 414-418, 2012.
LEE, K. et al. The biocompatibility of HA thin films deposition on anodized titanium alloys. Surface and Coating Technology, v. 205, p. 5267-5270, 2010.
LIU, X. et al. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, v. 47, p. 49-121, 2004.
MACHARA, K. et al. Mater Trans, v. 43, p. 2936-2942, 2002.
MARCIANO, F. R. et al. J. Colloid. Interface Sci., v. 340, p. 87-92, 2009.
NARAYANAN, R.; SESHADRI, S. K. Point defect model and corrosion of anodic oxide coatings on Ti–6Al–4V. Corrosion Science, v. 50, p. 1521-1529, 2008.
OKA, Y. et al. J. Biomed. Mater. Res. B: Appl. Biomater, v. 86B, p. 530-540, 2008.
PAN, Y. K. et al. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings. Materials Chemistry and Physics, v. 141, p. 842-849, 2013.
PARK, S. et al. Effects of anodizing voltage on the anodized and hydrothermally treated titanium surface. Metals and Materials International, v. 12, p. 505-511, 2006.
PARK, I. L. S. et al. Electrochimica Acta, v. 53, p. 863, 2007.
PEDEFERRI, M. P. et al. Development of a new treatment to induce anatase growth on Ti. NSTI – Nanotech, v. 2, p. 332-334, 2005.
POUILLEAU, J. et al. Struture and composition of passive titanium oxide films. Materials Science and Engineering, v. 47, p. 235-243, 1997.
SALANTIU, A. et al. Anodic oxidation of PM porous titanium for increasing the corrosion resistance of end osseous implants. Materials Chemistry and Physics, v. 149-150, p. 463-459, 2015.
SANDRINI, E. et al. A novel biomimetic treatment for an improved osteointegration of titanium. Journal of Applied Biomaterials and Biomechanics, v. 1, p. 33-42, 2003.
SCARANO, A. et al. J. Periodontol., v. 81, p. 1466-1471, 2010.
SCHULTZE, J. W. Stability, reactivity and breakdown of passive films. Problems of recente and future research. Electrochimica Acta, v. 45, p. 2499-2513, 2000.
SHABANI, M. et al. Study on the surface modification of titanium alloy by nanostructure TiO2 grown through anodic oxidation. Austin Journal of Chemical Engineering, v. 2, p. 1-5, 2015.
SIMKA, W. et al. Eng. Biomater., v. 16, p. 81-84, 2008.
SIMKA, W. et al. Electrochimica Acta, v. 54, p. 6983, 2009.
SIMKA, W. et al. Characterization of passive films formed on titanium during anodic oxidation. Electrochimica Acta, v. 56, p. 8962-8968, 2011.
SONG, H. J. et al. J. Mater. Process. Technol., v. 209, p. 864, 2009.
SZEWCZENKO, J. et al. Materialwiss Werstoffttech, v. 41, p. 360, 2010.
TAMILSELVI, S. et al. Evaluation of corrosion behavior modified Ti–6Al–4V ELI alloy in hanks solution. Journal of Applied Electrochemistry, v. 40, p. 285-293, 2010.
TSUANG, Y. H. et al. Artif. Organs, v. 32, p. 167-174, 2008.
VANHUMBEECK, J. F.; PROOST, J. Current understanding of Ti anodization. Corrosion Reviews, v. 27, p. 117-194, 2009.
VISAI, L. et al. Appl. Biomater. Biomech, v. 6, p. 170-177, 2008.
WALSH, F. C. et al. Plasma electrolytic oxidation (PEO) for production of anodized coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the Institute of Metal Finishing, v. 87, p. 122-135, 2009.
XIE, L. et al. Structure, morphology and fibroblasts adhesion of surface-porous titanium via anodic oxidation. J. Mater. Sci. Mater. Med., v. 21, p. 259-266, 2010.
ZHU, X. et al. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials, v. 22, p. 2199-2206, 2001.