A novel approach for solving bi-level mono-objective and multi-objective programming problems using evolutionary algorithms

Auteurs

  • Wafa Bouguern Mathematical Analysis and Applications Laboratory, Department of Mathematics, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser 34030, Algeria https://orcid.org/0000-0002-5565-3581
  • Smail Addoune Mathematical Analysis and Applications Laboratory, Department of Mathematics, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser 34030, Algeria
  • Hanene Debbiche Mathematical Analysis and Applications Laboratory, Department of Mathematics, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser 34030, Algeria

DOI :

https://doi.org/10.18540/jcecvl10iss9pp20661

Mots-clés :

Nonlinear bi-level programming, Multicriteria optimization, optimization

Résumé

Bi-level programming problems (BLP) constitute an important class of non-convex optimization problems, which makes it challenging to find a global optimal solution. In this article, we propose an efficient technique to solve this category of problems. We reformulated the initial problem as a single-level optimization problem using the optimal value function of the lower-level problem. To solve the latter, we employed a technique based on -dense curves to approximate the value function of the lower-level problem. Two evolutionary algorithms were then used to solve the reformulated problem. Furthermore, we extended our method to address multi-objective bi-level programming problems with a single objective at the upper level and multiple objectives at the lower level, known as a semi-vectorial bi-level programming problem. Several numerical experiments on nonlinear BLP show the outstanding efficiency of our approach.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Anandalingam, G., & White, D. (1990). A solution method for the linear static stackelberg problem using penalty functions. IEEE, 35, 1170-1173. doi: https://doi.org/10.1109/9.58565

Angelo, S., Krempser, E., & Barbosa, H. J. (2014). Differential evolution assisted by a surrogate model for bilevel programming problems. 2014 IEEE Congress on Evolutionary, Computation (CEC), 1784–1791. doi: https://doi.org/10.1109/CEC.2014.6900529

Bard, J. F., & Moore, J. T. (1990). A branch and bound algorithm for the bi-level programming problem. SIAM Journal on Scientific and Statistical Computing, 11, 128-290. doi: https://doi.org/10.1137/0911017

Butz, A. (1972). Solution of nonlinear equations with space filling curves. Journal of Mathematical Analysis and Applications, 37, 351-383. doi: https://doi.org/10.1016/0022-247X(72)90280-6

Dempe, S., & Dutta, J. (2012). Is bi-level programming a special case of a mathematical program with complementarity constraints?. Mathematical Programming, 131, 37-48. doi: https://doi.org/10.1007/s10107-010-0342-1

Dempe, S., & Franke, S. (2019). Solution of bi-level optimization problems using the kkt approach.Optimization, 68,1471-1489. doi: https://doi.org/10.1080/02331934.2019.1581192

Dempe, S., & Mehlitz, P.(2019). Semi-vectorial bi-level programming versus scalar bi-level programming. Optimization,157,657-679 .doi:https://doi.org/1 0.1080/023319 34.2019.1625 900

Dempe, S., & Zemkoho, A. (2013). New optimality conditions for the semi-vectorial bi-level optimization problem. Journal of Optimization Theory and Applications, 157, 54-74. doi: https://doi.org/10.1007/s10957-012-0161-z

Ehrgott, M. (2005). Multicriteria optimization. Springer Science and Business Media, 491 . doi: https://doi.org/10.1007/3-540-27659-9

Gupta, A., & Ong, Y. S. (2015). An evolutionary algorithm with adaptive scalarization for multi-objective bi-level programs. 2015 IEEE Congress on Evolutionary Computation (CEC), 1636-1642. https://doi:10.1109/CEC.2015.7257083

Jane, J. Y. (2005). Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. Journal of Mathematical Analysis and Applications, 307, 350-369. doi: https://doi.org/10.1016/j.jmaa.2004.10.032

Jialin, H., Guangquan, Z., Yaoguang, H., & Jie, L. (2016). A solution to bi/tri-level programming problems using particle swarm optimization. Information Sciences, 370, 519-537. doi: https://doi.org/10.1016/j.ins.2016.08.022

Joao, A. M., & Paulo, C. J. (2014). An algorithm based on particle swarm optimization for multi-objective bi-level linear problems. Applied Mathematics and Computation, 247, 547-561. doi: https://doi.org/10.1016/j.amc.2014.09.013

João, A. M., Antunes, C. H., & Carrasqueira, P. (2015). A pso approach to semi-vectorial bi-level programming: pessimistic, optimistic and deceiving solutions. Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 599-606. doi: https://doi.org/10.1145/2739480.2754644

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95- international conference on neural networks, 4, 1942-1948. doi: https://doi.org/10.1109/ICNN.1995 .488968

Li, H., & L.Zhang. (2021). An efficient solution strategy for bi-level multi-objective optimization problems using multi-objective evolutionary algorithm. Soft Computing, 25, 8241-8261. doi: https://doi.org/10.1007/s00500-021-05750-0

Lin, G. H., Xu, M., & Ye, J. J. (2014). On solving simple bi-level programs with a non convex lower level program. Mathematical Programming, 144, 277-305. doi: https://doi.o rg/10.10 07/s10107-013-0633-4

Ma, L., & Wang, G. (2020). A solving algorithm for nonlinear bi-level programing problems based on human evolutionary model. Algorithms, 13, 260-272. doi: https://doi. org/10.3390/a13100260

Mathieu, R., Pittard, L., & Anandalingam, G. (1994). Genetic algorithm based approach to bi-level linear programming. RAIRO-Operations Research, 28, 1-21.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61. doi: https://doi.org/10.1016/j.advengsoft.2013.12.007

Mitsos, A., & Barton, P. (2006). A test set for bi-level programs. Available at https://www.researchgate.net/publication/228455 291 .

Mora, G., & Cherruault, Y. (1997). Characterization and generation of _-dense curves. Computers and Mathematics with Applications, 33, 83-91. doi: https://doi.org/10.1016/S0898-1221(97)00067-9

Mora, G., & Mora-Porta, G. (2005). Dimensionality reducing multiple integrals by alpha-dense curves. International Journal of Pure and Applied Mathematics, 22, 103-114.

Nouri, A., Abdenacer, N., & Sahraoui, D. (2023). Accurate range-based distributed localization of wireless sensor nodes using grey wolf optimizer. The Journal of Engineering and Exact Sciences, 9, 15920–01e. doi: https://doi.org/10.18540/jcecvl9iss4pp15920-01e

Oduguwa, V., & Roy, R. (2002). Bi-level optimisation using genetic algorithm. Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems, 322-327. doi: https://doi.org/10.1109/ICAIS.2002.1048121

Outrata, J. V. (1990). On the numerical solution of a class of stackelberg problems. Zeitschrift für Operations Research, 34, 255-277. doi: https://doi.org/10.1007/BF01416737

Ruuska, S., & Miettinen, K. (2012). Constructing evolutionary algorithms for bi-level multiobjective optimization. 2012 IEEE congress on evolutionary computation, 1-7. doi: https://doi.org/10.1109/CEC.2012.6256156

Shimizu, K., & Aiyoshi, E. (1981). A new computational method for stackelberg and min-max problems by use of a penalty method. IEEE Transactions on Automatic Control, 26, 460-466. doi: https://doi.org/10.1109/TAC.1981.1102607

Srivastava, S., & Sahana, S. K. (2019). Application of bat algorithm for transport network design problem. Applied Computational Intelligence and soft computing, 2019, 9864090. doi: https://doi.org/10.1155/2019/9864090

Stephan, D., Joydeep, D., & Mordukhovich, B. (2007). New necessary optimality conditions in optimistic bi-level programming. Optimization, 56, 577-604. doi: https ://doi.org/ 10.108 0/ 02331930701617551

Xu, M., & Ye, J. J. (2014). A smoothing augmented lagrangian method for solving simple bi-level programs. Computational Optimization and Applications, 59, 353-377. doi: http s://do i.org/ 10.1007/s10589-013-9627-7

Ye, J. J., & Zhu, D. L. (1995). Optimality conditions for bi-level programming problems. Optimization, 33, 9-27. doi: https://doi.org/10.1080/02331939508844060

Zemkoho, A., & Zhou, S. (2021). Theoretical and numerical comparison of the karush–Kuhn tucker and value function reformulations in bi-level optimization. Computational Optimization and Applications, 78, 625-674. doi: https://doi.org/10.1007/s10589-020-00250-7

Zhang, T., Chen, Z., & Chen, J. (2017). A cooperative coevolution pso technique for complex bilevel programming problems and application to watershed water trading decision making problems. Journal of Nonlinear Sciences and Applications(JNSA), 10. doi: https://doi.org/10 .224 36 /jns a .010.04.65

Zhao, Z., & Gu, X. (2006). Particle swarm optimization based algorithm for bi-level programming problems. Sixth International Conference on Intelligent Systems Design and Applications, 2, 951-956. doi: https://doi.org/10.1109/ISDA.2006.253740

Ziadi, R., & Bencherif-Madani, A. (2023). A mixed algorithm for smooth global optimization. Journal of Mathematical Modeling, 11, 207-228. doi: http s://do i.org/10. 22124/JM M.202 2.23133.2061

Téléchargements

Publiée

2024-12-17

Comment citer

Bouguern, W., Addoune, S., & Debbiche, H. (2024). A novel approach for solving bi-level mono-objective and multi-objective programming problems using evolutionary algorithms. The Journal of Engineering and Exact Sciences, 10(9), 20661. https://doi.org/10.18540/jcecvl10iss9pp20661

Numéro

Rubrique

General Articles