Reynolds experiment and fundamentals of Fluid Mechanics
DOI:
https://doi.org/10.18540/jcecvl3iss3pp346-357Keywords:
Reynolds number, Flow of Fluids, Chemical engineering, Transport Phenomena, Didactic experiment.Abstract
The flows can be characterized as: laminar or turbulent flow; uniform or transient and compressible and incompressible. The Reynolds number is an important dimensionless quantityin fluid mechanics, that is used to help predict flow patterns in different fluid flow situationss, being defined by the ratio between inertial forces and viscous forces. The present work had as objective to use a didactic experiment of the Chemical Engineering Laboratory course, specifically Fluid Mechanics, to evoke the following concepts seen in the classroom, as well as: A) hydraulic diameter; B) Reynolds number; C) mass flow and volumetric flow; D) average flow velocity; (E) continuity equation, and visualize the different flow regimes: laminar, transition and turbulent. The experimental observation allowed a classification of the flow consistent with that of the calculations. In this experiment, it was mathematically confirmed by the uncertainty analysis and error propagation, using the EES software, the significant contribution of the water volume measurement into the values ??of the experimental errors. The effect and the contribution of temperature were also verified in the determination of the Reynolds number.
Downloads
References
ANDRADE, C. A.; REIS, H. F. A. F.; SIQUEIRA, A. M. O.; MADUREIRA, M. F.;
GOUVÊA, N. A.; GONZAGA, L. F.; MENEZES T. L.; FREIRE, B. H. F.,
Propagação de incertezas: um experimento acadêmico simples. The Journal of
Engineering and Exact Sciences, v. 3 (in press), 2017.
BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Fenômenos de transporte. 2. ed. Rio
de Janeiro: LTC, 2004. 839 p.
CASTRO, A. L. P. Estudo de velocidades e do número de Reynolds para o descolamento
dos mexilhões - dourados (Limnoperna fortunei) [manuscrito]/Ana Letícia Pilz de
Castro. –2013. xiii, 90 f., enc.: il.
DONATELLI, G. D. KONRATH, A. C. Simulação de Monte Carlo na Avaliação de
Incertezas de Medição. Revista de Ciência & Tecnologia, V. 13, n 25/26, p. 5-15.
Jan./Dez. 2005.
FOX, R. W.; McDONALD, A. T. Introdução à mecânica dos fluidos. 6. ed. Rio de Janeiro:
LTC, 2006.
GUM. Guia para a Expressão da Incerteza de Medição. Rio de Janeiro: INMETRO, ABNT,
HOLMAN, J. P. Experimental methods for engineers. New York: McGaw-Hill. 1994.
INCROPERA, F. P.; DeWITT, D. P.; BERGMAN, T. L.; LAVINE, A. S. Fundamentos de
transferência de calor e de massa. 6. ed. Rio de Janeiro: LTC, 2008.
MILLS, A. F., CHANG, B. H. Error Analysis of Experiments: A Manual for
Engineering Students. Los Angeles, California, 2004.
PEREIRA, E. L., DIAS, B. E., LERIS, B. N., TANURE, J. S., Propagação de erros e
incertezas em experimentos. Revista da Universidade Vale do Rio Verde, Três
Corações, v. 14, n. 2, p. 1136-1151, ago./dez. 2016.
SIQUEIRA, A. M. O., SATO, A. G.; Apostila de Laboratório de Engenharia Química I,
Viçosa: UFV, 2016, Disponível em:
<https://www2.cead.ufv.br/sistemas/pvanet/files/conteudo/4459/praticaN01elementosb
asicosmecflu.pdf>. Acesso em: 30 maio 2016.
WHITE, F. M. Mecânica dos fluidos. 6. ed. São Paulo: McGraw-Hill, 2002.
WELTY, J. R.; WICKS, C. E. e WILSON, R. E., RORRER, G. L. Fundamentals of
momentum, heat, and mass transfer. 5th ed. New York: John Wiley & Sons, 2008.
xiii, 711 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 The Journal of Engineering and Exact Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.