A Novel Technique for Handwritten Signature Recognition

Authors

  • Leila Boucerredj Department of Electronics and Automatics, Faculty of Science and Technology, PIMIS, Laboratory, University of 8 Mai 1945, PO Box 401, GUELMA 24000, Algeria https://orcid.org/0000-0002-8481-7725
  • Karima Kechroud Department of Electronics and Automatics, Faculty of Science and Technology, PIMIS, Laboratory, University of 8 Mai 1945, PO Box 401, GUELMA 24000, Algeria
  • Bouaziz Noureddine Department of Electronics and Automatics, Faculty of Science and Technology, PIMIS, Laboratory, University of 8 Mai 1945, PO Box 401, GUELMA 24000, Algeria https://orcid.org/0000-0002-2376-1916
  • Abderrahmane Khechekhouche Laboratory (LNTDL), Faculty of Technology, University of El Oued, Algeria https://orcid.org/0000-0002-7278-2625

DOI:

https://doi.org/10.18540/jcecvl10iss8pp20810

Keywords:

Biometric Recognition, Deep Learning (DL), Handwritten Signatures, CNN, MCYT-75 and GPDS-300 database.

Abstract

Handwritten signature recognition (HSR) is a critical component of biometric systems, widely used for securing financial transactions and identity verification. However, the variability of handwritten signatures, influenced by individual writing styles, inconsistencies, and environmental factors, presents significant challenges for recognition systems. Despite these obstacles, signatures remain a reliable and popular biometric trait. This paper introduces a novel deep learning approach utilizing a convolutional neural network (CNN) architecture specifically designed for HSR. The proposed method was validated using two prominent datasets, MCYT-75 and GPDS-300, with detailed descriptions of the CNN structure. Experiments, conducted on a personal computer equipped with an NVIDIA Quadro M1200 GPU, an Intel i7 processor, and 32 GB of RAM, demonstrated the model’s exceptional performance, achieving validation accuracies of 99.60% on the MCYT-75 dataset and 99.80% on the GPDS-300 dataset. These results reflect the model’s robustness and minimized error rates, outperforming existing techniques and underscoring the effectiveness of deep learning for signature recognition. This study highlights the proposed model's potential for real-world applications and paves the way for further advancements in biometric authentication technologies.

Downloads

Download data is not yet available.

References

Abdoli, S., & Hajati, F. (2014). Offline signature verification using geodesic derivative pattern. In 22nd Iranian Conference on Electrical Engineering (ICEE 2014), 1018–1023.

Akinci, T., Antonoli, D., et al. (2023). Development and evaluation of deep learning models for automated estimation of myelin maturation using pediatric brain MRI scans. Radiology Artificial Intelligence, 5(5), e220292.

Alaei, A., et al. (2017). An efficient signature verification method based on an interval symbolic representation and a fuzzy similarity measure. IEEE Transactions on Information Forensics and Security, 12(10), 2360–2372. https://doi.org/10.1109/TIFS.2017.2707332

Alajrami, E., et al. (2020). Handwritten signature verification using deep learning. International Journal of Academic Multidisciplinary Research, 3(12), 39–44.

Albasu, F. B., & Al Akkad, M. A. (2023). Exploiting deep learning techniques for the verification of handwritten signatures. Intellektual'nye Sistemy v Proizvodstve, 21(3), 27–39. https://doi.org/10.22213/2410-9304-2023-3-27-39

Anamika, J., et al. (2021). Signature verification using geometrical features and artificial neural network classifier. Neural Computing and Applications, 33(12), 6999–7010. https://doi.org/10.1007/s00521-020-05473-7

Aslani, S., et al. (2023). Utilisation of deep learning for COVID-19 diagnosis. Clinical Radiology, 78(2), 150–157.

Benhur, S. J. (2021). A friendly introduction to Siamese networks. Medium. https://towardsdatascience.com/a-friendly-introduction-to-siamese-networks-85ab17522942

Bertolini, D., et al. (2010). Reducing forgeries in writer-independent offline signature verification through ensemble of classifiers. Pattern Recognition, 43(1), 387–396. https://doi.org/10.1016/j.patcog.2009.05.009

Bharadi, V. A., & Kekre, H. B. (2010). Off-line signature recognition systems. International Journal of Computer Applications, 1(27), 48–56.

Bhunia, A. K., Alaei, A., & Roy, P. P. (2019). Signature verification approach using fusion of hybrid texture features. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04220-x

Bindal, A. (2019). Normalization techniques in deep neural networks. Techspace. https://medium.com/techspace-usict/normalization-techniques-in-deep-neural-networks-9121bf100d8

Cong, S., et al. (2023). A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Review, 56(3), 1905–1969.

Diaz, M., Ferrer, M. A., Eskander, G. S., & Sabourin, R. (2017). Generation of duplicated off-line signature images for verification systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5), 951–964. https://doi.org/10.1109/TPAMI.2016.2560810

Dubey, R., & Agrawal, D. K. (2012). Comparative analysis of off-line signature recognition. In Proceedings – 2012 International Conference on Communication, Information, and Computing Technology (ICCICT), 1–6.

Ferrer, M. A., Vargas, J. F., Morales, A., & Ordonez, A. (2012). Robustness of offline signature verification based on gray level features. IEEE Transactions on Information Forensics and Security, 7(3), 966–977. https://doi.org/10.1109/TIFS.2012.2190281

Ferrer, M., Alonso, J., & Travieso, C. (2005). Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 993–997.

Ghosh, R. (2020). A recurrent neural network based deep learning model for offline signature verification and recognition system. Expert Systems with Applications, 114, 114249. https://doi.org/10.1016/j.eswa.2020.114249

Haug, C. J., et al. (2023). Artificial intelligence and machine learning in clinical medicine, 2023. New England Journal of Medicine, 388(13), 1201–1208.

Hezil, H., Djemili, R., & Bourouba, H. (2018). Signature recognition using binary features and KNN. International Journal of Biometrics, 10(1), 1. https://doi.org/10.1504/ijbm.2018.090121

Impedovo, D., & Pirlo, G. (2008). Automatic signature verification: The state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(5), 609–635. https://doi.org/10.1109/TSMCC.2008.923866

Jain, A., Singh, S. K., & Singh, K. P. (2020). Signature verification using geometrical features and artificial neural network classifier. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05473-7

Kang, N. (2019). Introducing deep learning and neural networks – Deep learning for rookies (1). Medium. https://towardsdatascience.com/introducing-deep-learning-and-neural-networks-deep-learning-for-rookies-1-bd68f9cf5883

Khalil, M. I., et al. (2009). Enhanced DTW-based on-line signature verification. In 16th IEEE International Conference on Image Processing (ICIP) (pp. 2713–2716). IEEE. https://doi.org/10.1109/ICIP.2009.5414166

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization. arXiv:1412.6980. http://arxiv.org/abs/1412.6980

Kshatri, S. S., et al. (2023). Convolutional neural network in medical image analysis: A review. Archives of Computational Methods in Engineering, 30(4), 2793–2810.

Kurani, A., et al. (2023). A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Annals of Data Science, 10(1), 183–208.

Liu, Z., et al. (2023). Deep learning-based brain tumor segmentation: A survey. Complex & Intelligent Systems, 9(1), 1001–1026.

Manohar, S. (2017). Mastering machine learning with Python in six steps: A practical implementation guide to predictive data analytics using Python. Apress.

Menghani, G. (2023). Efficient deep learning: A survey on making deep learning models smaller, faster, and better. ACM Computing Surveys, 55(12), 1–37.

Odeh, S., & Khalil, M. (2011). Apply Multi-Layer Perceptrons Neural Network for Off-Line Signature Verification and Recognition. International Journal of Computer Science Issues (IJCSI), 8(6), 261–266.

Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., & et al. (2003). MCYT baseline corpus: A bimodal biometric database. Vision, Image and Signal Processing, IEE Proceedings, 150(6), 395–401. doi:10.1049/ip-vis:20031078

Sadak, M. S., Kahraman, N., & Uluda?, U. (2022). Dynamic and static feature fusion for increased accuracy in signature verification. Signal Processing: Image Communication, 108, 116823. https://doi.org/10.1016/j.image.2022.116823

Sanghvirajit. (2021). A complete guide to Adam and RMSprop optimizer. Analytics Vidhya. https://medium.com/analytics-vidhya/a-complete-guide-to-adam-and-rmsprop-optimizer-75f4502d83be

Shah, A., et al. (2016). An offline signature verification technique using pixels intensity levels. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(8), 205–222. https://doi.org/10.14257/ijsip.2016.9.8.18

Sharif, M., Raza, M., Shah, J. H., Yasmin, M., & Fernandes, S. L. (2019). An overview of biometrics methods. In Handbook of Multimedia Information Security: Techniques and Applications (pp. 15–35).

Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least squares support vector machines. World Scientific Publishing Co., Pte, Ltd.

Ta?pinar, G., et al. (2023). 3D CNN-based automatic diagnosis of ADHD using fMRI volumes. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 25(73), 1–8.

Vargas, F., Ferrer, M. A., Travieso, C. M, & Alonso, J. B. (2007). Off-line handwritten signature GPDS-960 corpus. In Proceedings of the 9th International Conference on Document Analysis and Recognition, pp. 764–768. doi:10.1109/icdar.2007.4377018

Vargas, J.F.; Ferrer, M.A.; Travieso, C. M.; Alonso, J. B.; (2011). Off-line signature verification based on grey level information using texture features. Pattern Recognition, 44(2), 375–385. https://doi.org/10.1016/j.patcog.2010.08.010

Vinushanth, C. V. (2020). Markov and hidden Markov models. Medium. https://towardsdatascience.com/markov-and-hidden-markov-model-3eec42298d75

Wang, J., Wang, J., Wang, S., & Zhang, Y. (2023). Deep learning in pediatric neuroimaging. Displays, 80, 102583. https://doi.org/10.1016/j.displa.2023.102583

Yu, T., et al. (2023). Machine learning-enabled retrobiosynthesis of molecules. Nature Catalysis, 6(2), 137–151.

Downloads

Published

2024-12-12

How to Cite

Boucerredj, L., Kechroud, K., Noureddine, B., & Khechekhouche, A. (2024). A Novel Technique for Handwritten Signature Recognition. The Journal of Engineering and Exact Sciences, 10(8), 20810. https://doi.org/10.18540/jcecvl10iss8pp20810

Issue

Section

General Articles